metadata
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- 222gate/Blurdus-7b-v0.1
- 222gate/Blurred-Beagle-7b-slerp
- liminerity/Blur-7b-v1.21
- liminerity/Blur-7B-slerp-v0.1
base_model:
- 222gate/Blurdus-7b-v0.1
- 222gate/Blurred-Beagle-7b-slerp
- liminerity/Blur-7b-v1.21
- liminerity/Blur-7B-slerp-v0.1
model-index:
- name: Blur-4x7b-MOE-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 72.27
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=222gate/Blur-4x7b-MOE-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.14
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=222gate/Blur-4x7b-MOE-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.05
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=222gate/Blur-4x7b-MOE-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 68.82
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=222gate/Blur-4x7b-MOE-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.56
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=222gate/Blur-4x7b-MOE-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 68.92
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=222gate/Blur-4x7b-MOE-v0.1
name: Open LLM Leaderboard
Blur-4x7b-MOE-v0.1
Blur-4x7b-MOE-v0.1 is a Mixure of Experts (MoE) made with the following models using LazyMergekit:
- 222gate/Blurdus-7b-v0.1
- 222gate/Blurred-Beagle-7b-slerp
- liminerity/Blur-7b-v1.21
- liminerity/Blur-7B-slerp-v0.1
🧩 Configuration
base_model: 222gate/BrurryDog-7b-v0.1
gate_mode: hidden
dtype: bfloat16
experts:
- source_model: 222gate/Blurdus-7b-v0.1
positive_prompts:
- "versatile"
- "helpful"
- "factual"
- "integrated"
- "adaptive"
- "comprehensive"
- "balanced"
negative_prompts:
- "specialized"
- "narrow"
- "focused"
- "limited"
- "specific"
- source_model: 222gate/Blurred-Beagle-7b-slerp
positive_prompts:
- "creative"
- "chat"
- "discuss"
- "culture"
- "world"
- "expressive"
- "detailed"
- "imaginative"
- "engaging"
negative_prompts:
- "sorry"
- "cannot"
- "factual"
- "concise"
- "straightforward"
- "objective"
- "dry"
- source_model: liminerity/Blur-7b-v1.21
positive_prompts:
- "analytical"
- "accurate"
- "logical"
- "knowledgeable"
- "precise"
- "calculate"
- "compute"
- "solve"
- "work"
- "python"
- "javascript"
- "programming"
- "algorithm"
- "tell me"
- "assistant"
negative_prompts:
- "creative"
- "abstract"
- "imaginative"
- "artistic"
- "emotional"
- "mistake"
- "inaccurate"
- source_model: liminerity/Blur-7B-slerp-v0.1
positive_prompts:
- "instructive"
- "clear"
- "directive"
- "helpful"
- "informative"
negative_prompts:
- "exploratory"
- "open-ended"
- "narrative"
- "speculative"
- "artistic"
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "222gate/Blur-4x7b-MOE-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 74.29 |
AI2 Reasoning Challenge (25-Shot) | 72.27 |
HellaSwag (10-Shot) | 88.14 |
MMLU (5-Shot) | 65.05 |
TruthfulQA (0-shot) | 68.82 |
Winogrande (5-shot) | 82.56 |
GSM8k (5-shot) | 68.92 |