arubenruben's picture
End of training
48ff1d5 verified
metadata
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
  - generated_from_trainer
datasets:
  - harem
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: NER_harem_bert-base-portuguese-cased
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: harem
          type: harem
          config: default
          split: test
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.6852879944482998
          - name: Recall
            type: recall
            value: 0.7377661561449383
          - name: F1
            type: f1
            value: 0.7105594531390537
          - name: Accuracy
            type: accuracy
            value: 0.952219112355058

NER_harem_bert-base-portuguese-cased

This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on the harem dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2351
  • Precision: 0.6853
  • Recall: 0.7378
  • F1: 0.7106
  • Accuracy: 0.9522

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 300

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 16 0.7692 0.0 0.0 0.0 0.8358
No log 2.0 32 0.4831 0.3140 0.2731 0.2921 0.8790
No log 3.0 48 0.3405 0.4692 0.4897 0.4793 0.9119
No log 4.0 64 0.2747 0.5481 0.6156 0.5799 0.9340
No log 5.0 80 0.2282 0.6077 0.6758 0.6399 0.9443
No log 6.0 96 0.2145 0.6267 0.6892 0.6565 0.9479
No log 7.0 112 0.2223 0.6395 0.6926 0.6650 0.9493
No log 8.0 128 0.2100 0.6822 0.7378 0.7089 0.9530
No log 9.0 144 0.2077 0.6810 0.7497 0.7137 0.9537
No log 10.0 160 0.2173 0.6846 0.7460 0.7140 0.9523
No log 11.0 176 0.2226 0.7001 0.7594 0.7285 0.9542
No log 12.0 192 0.2204 0.7015 0.7568 0.7281 0.9538
No log 13.0 208 0.2278 0.6746 0.7411 0.7063 0.9533
No log 14.0 224 0.2351 0.6853 0.7378 0.7106 0.9522

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2