wav2vec2_base_10k_8khz_pt_cv7_2

This model is a fine-tuned version of lgris/seasr_2022_base_10k_8khz_pt on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 76.3426
  • Wer: 0.1979

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Wer
189.1362 0.65 500 80.6347 0.2139
174.2587 1.3 1000 80.2062 0.2116
164.676 1.95 1500 78.2161 0.2073
176.5856 2.6 2000 78.8920 0.2074
164.3583 3.25 2500 77.2865 0.2066
161.414 3.9 3000 77.8888 0.2048
158.283 4.55 3500 77.3472 0.2033
159.2265 5.19 4000 79.0953 0.2036
156.3967 5.84 4500 76.6855 0.2029
154.2743 6.49 5000 77.7785 0.2015
156.6497 7.14 5500 77.1220 0.2033
157.3038 7.79 6000 76.2926 0.2027
162.8151 8.44 6500 76.7602 0.2013
151.8613 9.09 7000 77.4777 0.2011
153.0225 9.74 7500 76.5206 0.2001
157.52 10.39 8000 76.1061 0.2006
145.0592 11.04 8500 76.7855 0.1992
150.0066 11.69 9000 76.0058 0.1988
146.8128 12.34 9500 76.2853 0.1987
146.9148 12.99 10000 76.3426 0.1979

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.3
  • Tokenizers 0.11.0
Downloads last month
83
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lgris/wav2vec2_base_10k_8khz_pt_cv7_2

Adapters
1 model

Dataset used to train lgris/wav2vec2_base_10k_8khz_pt_cv7_2

Evaluation results