Edit model card

wav2vec2-xls-r-1b-cv8

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PT dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2007
  • Wer: 0.1838

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.1172 0.32 500 1.2852 0.9783
1.4152 0.64 1000 0.6434 0.6105
1.4342 0.96 1500 0.4844 0.3989
1.4657 1.29 2000 0.5080 0.4490
1.4961 1.61 2500 0.4764 0.4264
1.4515 1.93 3000 0.4519 0.4068
1.3924 2.25 3500 0.4472 0.4132
1.4524 2.57 4000 0.4455 0.3939
1.4328 2.89 4500 0.4369 0.4069
1.3456 3.22 5000 0.4234 0.3774
1.3725 3.54 5500 0.4387 0.3789
1.3812 3.86 6000 0.4298 0.3825
1.3282 4.18 6500 0.4025 0.3703
1.3326 4.5 7000 0.3917 0.3502
1.3028 4.82 7500 0.3889 0.3582
1.293 5.14 8000 0.3859 0.3496
1.321 5.47 8500 0.3875 0.3576
1.3165 5.79 9000 0.3927 0.3589
1.2701 6.11 9500 0.4058 0.3621
1.2718 6.43 10000 0.4211 0.3916
1.2683 6.75 10500 0.3968 0.3620
1.2643 7.07 11000 0.4128 0.3848
1.2485 7.4 11500 0.3849 0.3727
1.2608 7.72 12000 0.3770 0.3474
1.2388 8.04 12500 0.3774 0.3574
1.2524 8.36 13000 0.3789 0.3550
1.2458 8.68 13500 0.3770 0.3410
1.2505 9.0 14000 0.3638 0.3403
1.2254 9.32 14500 0.3770 0.3509
1.2459 9.65 15000 0.3592 0.3349
1.2049 9.97 15500 0.3600 0.3428
1.2097 10.29 16000 0.3626 0.3347
1.1988 10.61 16500 0.3740 0.3269
1.1671 10.93 17000 0.3548 0.3245
1.1532 11.25 17500 0.3394 0.3140
1.1459 11.58 18000 0.3349 0.3156
1.1511 11.9 18500 0.3272 0.3110
1.1465 12.22 19000 0.3348 0.3084
1.1426 12.54 19500 0.3193 0.3027
1.1278 12.86 20000 0.3318 0.3021
1.149 13.18 20500 0.3169 0.2947
1.114 13.5 21000 0.3224 0.2986
1.1249 13.83 21500 0.3227 0.2921
1.0968 14.15 22000 0.3033 0.2878
1.0851 14.47 22500 0.2996 0.2863
1.0985 14.79 23000 0.3011 0.2843
1.0808 15.11 23500 0.2932 0.2759
1.069 15.43 24000 0.2919 0.2750
1.0602 15.76 24500 0.2959 0.2713
1.0369 16.08 25000 0.2931 0.2754
1.0573 16.4 25500 0.2920 0.2722
1.051 16.72 26000 0.2855 0.2632
1.0279 17.04 26500 0.2850 0.2649
1.0496 17.36 27000 0.2817 0.2585
1.0516 17.68 27500 0.2961 0.2635
1.0244 18.01 28000 0.2781 0.2589
1.0099 18.33 28500 0.2783 0.2565
1.0016 18.65 29000 0.2719 0.2537
1.0157 18.97 29500 0.2621 0.2449
0.9572 19.29 30000 0.2582 0.2427
0.9802 19.61 30500 0.2707 0.2468
0.9577 19.94 31000 0.2563 0.2389
0.9562 20.26 31500 0.2592 0.2382
0.962 20.58 32000 0.2539 0.2341
0.9541 20.9 32500 0.2505 0.2288
0.9587 21.22 33000 0.2486 0.2302
0.9146 21.54 33500 0.2461 0.2269
0.9215 21.86 34000 0.2387 0.2228
0.9105 22.19 34500 0.2405 0.2222
0.8949 22.51 35000 0.2316 0.2191
0.9153 22.83 35500 0.2358 0.2180
0.8907 23.15 36000 0.2369 0.2168
0.8973 23.47 36500 0.2323 0.2120
0.8878 23.79 37000 0.2293 0.2104
0.8818 24.12 37500 0.2302 0.2132
0.8919 24.44 38000 0.2262 0.2083
0.8473 24.76 38500 0.2257 0.2040
0.8516 25.08 39000 0.2246 0.2031
0.8451 25.4 39500 0.2198 0.2000
0.8288 25.72 40000 0.2199 0.1990
0.8465 26.05 40500 0.2165 0.1972
0.8305 26.37 41000 0.2128 0.1957
0.8202 26.69 41500 0.2127 0.1937
0.8223 27.01 42000 0.2100 0.1934
0.8322 27.33 42500 0.2076 0.1905
0.8139 27.65 43000 0.2054 0.1880
0.8299 27.97 43500 0.2026 0.1868
0.7937 28.3 44000 0.2045 0.1872
0.7972 28.62 44500 0.2025 0.1861
0.809 28.94 45000 0.2026 0.1858
0.813 29.26 45500 0.2013 0.1838
0.7718 29.58 46000 0.2010 0.1837
0.7929 29.9 46500 0.2008 0.1840

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.3.dev0
  • Tokenizers 0.11.0
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train lgris/wav2vec2-xls-r-1b-cv8

Evaluation results