File size: 2,314 Bytes
3046e76 35b4115 3046e76 35b4115 3046e76 35b4115 3046e76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: other
base_model: google/gemma-7b
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- HuggingFaceH4/OpenHermes-2.5-1k-longest
model-index:
- name: gemma-7b-sft-full-longest-1k-v0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gemma-7b-sft-full-longest-1k-v0
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co./google/gemma-7b) on the HuggingFaceH4/OpenHermes-2.5-1k-longest dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7445
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 5.6993 | 1.0 | 6 | 2.8191 |
| 3.3379 | 2.0 | 12 | 2.2503 |
| 2.8978 | 3.0 | 18 | 2.0730 |
| 2.7495 | 4.0 | 24 | 1.9771 |
| 2.5265 | 5.0 | 30 | 1.9129 |
| 2.4727 | 6.0 | 36 | 1.8681 |
| 2.443 | 7.0 | 42 | 1.8344 |
| 2.3432 | 8.0 | 48 | 1.8083 |
| 2.3291 | 9.0 | 54 | 1.7878 |
| 2.2843 | 10.0 | 60 | 1.7719 |
| 2.2529 | 11.0 | 66 | 1.7595 |
| 2.2723 | 12.0 | 72 | 1.7509 |
| 2.2302 | 13.0 | 78 | 1.7465 |
| 2.2224 | 14.0 | 84 | 1.7448 |
| 2.2309 | 15.0 | 90 | 1.7445 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.1
|