File size: 2,931 Bytes
ee89efc
 
 
 
099ea17
ee89efc
 
 
099ea17
 
 
 
 
ee89efc
 
 
 
 
 
 
 
 
 
099ea17
ee89efc
099ea17
 
 
 
 
 
 
 
 
ee89efc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: other
base_model: lewtun/gemma-7b-sft-full-ultrachat-v0
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: gemma-7b-dpo-full-ultrafeedback-beta-0.01
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gemma-7b-dpo-full-ultrafeedback-beta-0.01

This model is a fine-tuned version of [lewtun/gemma-7b-sft-full-ultrachat-v0](https://huggingface.co./lewtun/gemma-7b-sft-full-ultrachat-v0) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4698
- Rewards/chosen: -1.0027
- Rewards/rejected: -2.3339
- Rewards/accuracies: 0.7698
- Rewards/margins: 1.3312
- Logps/rejected: -1118.8601
- Logps/chosen: -1006.0907
- Logits/rejected: 90.6424
- Logits/chosen: 105.6680

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.552         | 0.21  | 100  | 0.5756          | -2.8657        | -3.5901          | 0.7460             | 0.7243          | -1244.4771     | -1192.3933   | 82.3244         | 96.5612       |
| 0.501         | 0.42  | 200  | 0.4914          | -1.6427        | -2.6660          | 0.7817             | 1.0233          | -1152.0745     | -1070.0895   | 91.1202         | 105.1467      |
| 0.4893        | 0.63  | 300  | 0.4810          | -1.6604        | -2.8398          | 0.7619             | 1.1794          | -1169.4480     | -1071.8550   | 87.4237         | 101.9799      |
| 0.4759        | 0.84  | 400  | 0.4718          | -0.8508        | -2.1538          | 0.7817             | 1.3030          | -1100.8470     | -990.8950    | 89.1600         | 104.0108      |


### Framework versions

- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.1