File size: 1,743 Bytes
fc518be
 
 
 
12878fc
fc518be
 
 
12878fc
 
 
 
 
fc518be
 
 
 
 
 
 
 
 
 
12878fc
 
 
 
 
 
 
 
 
 
 
fc518be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: other
base_model: lewtun/gemma-7b-sft-full-openhermes-v0
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- argilla/dpo-mix-7k
model-index:
- name: gemma-7b-dpo-full-openhermes-mix1-beta-0.4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gemma-7b-dpo-full-openhermes-mix1-beta-0.4

This model is a fine-tuned version of [lewtun/gemma-7b-sft-full-openhermes-v0](https://huggingface.co./lewtun/gemma-7b-sft-full-openhermes-v0) on the argilla/dpo-mix-7k dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7132
- Rewards/chosen: 3.7306
- Rewards/rejected: -1.2509
- Rewards/accuracies: 0.7292
- Rewards/margins: 4.9815
- Logps/rejected: -810.2578
- Logps/chosen: -782.9427
- Logits/rejected: 98.6417
- Logits/chosen: 106.9546

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results



### Framework versions

- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.1