bert-finetuned-ner / README.md
lewisnjue's picture
Training complete
7fe6525 verified
---
library_name: transformers
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9323097242859502
- name: Recall
type: recall
value: 0.9503534163581285
- name: F1
type: f1
value: 0.9412451037586466
- name: Accuracy
type: accuracy
value: 0.9865926885265203
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co./bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0624
- Precision: 0.9323
- Recall: 0.9504
- F1: 0.9412
- Accuracy: 0.9866
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0756 | 1.0 | 1756 | 0.0655 | 0.9057 | 0.9360 | 0.9206 | 0.9821 |
| 0.0342 | 2.0 | 3512 | 0.0746 | 0.9306 | 0.9451 | 0.9378 | 0.9848 |
| 0.0194 | 3.0 | 5268 | 0.0624 | 0.9323 | 0.9504 | 0.9412 | 0.9866 |
### Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0