See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: EleutherAI/pythia-70m-deduped
bf16: true
chat_template: llama3
datasets:
- data_files:
- 5fa650980024d17c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/5fa650980024d17c_train_data.json
type:
field_input: rejected
field_instruction: prompt
field_output: chosen
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso11/64fe75bc-328c-4e02-aba4-59885360b872
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/5fa650980024d17c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 70d9c003-ae9c-4efa-949d-2650dfd80aa8
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 70d9c003-ae9c-4efa-949d-2650dfd80aa8
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
64fe75bc-328c-4e02-aba4-59885360b872
This model is a fine-tuned version of EleutherAI/pythia-70m-deduped on the None dataset. It achieves the following results on the evaluation set:
- Loss: 8.9798
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
17.0013 | 0.0041 | 1 | 9.2526 |
18.6078 | 0.0207 | 5 | 9.2333 |
17.987 | 0.0415 | 10 | 9.1727 |
16.0464 | 0.0622 | 15 | 9.1243 |
17.1351 | 0.0830 | 20 | 9.0388 |
16.808 | 0.1037 | 25 | 9.0161 |
17.159 | 0.1245 | 30 | 9.0357 |
17.1988 | 0.1452 | 35 | 9.0004 |
17.7996 | 0.1660 | 40 | 8.9848 |
19.0675 | 0.1867 | 45 | 8.9646 |
17.9008 | 0.2075 | 50 | 8.9798 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Model tree for lesso11/64fe75bc-328c-4e02-aba4-59885360b872
Base model
EleutherAI/pythia-70m-deduped