See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: sethuiyer/Medichat-Llama3-8B
bf16: true
chat_template: llama3
datasets:
- data_files:
- e3330797ff483dea_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e3330797ff483dea_train_data.json
type:
field_input: input_text
field_instruction: instruction-1
field_output: output_text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: lesso10/fd43108d-7560-4a1e-9024-e2e46a9849eb
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 4
mlflow_experiment_name: /tmp/e3330797ff483dea_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 4d5f1573-de90-443e-b28f-89827e6e89e2
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 4d5f1573-de90-443e-b28f-89827e6e89e2
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
fd43108d-7560-4a1e-9024-e2e46a9849eb
This model is a fine-tuned version of sethuiyer/Medichat-Llama3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6464
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.9951 | 0.0049 | 1 | 1.9652 |
2.0308 | 0.0246 | 5 | 1.8794 |
1.8065 | 0.0492 | 10 | 1.7605 |
1.8216 | 0.0738 | 15 | 1.7238 |
1.764 | 0.0984 | 20 | 1.6936 |
1.6789 | 0.1230 | 25 | 1.6752 |
1.7018 | 0.1476 | 30 | 1.6629 |
1.5934 | 0.1722 | 35 | 1.6542 |
1.7008 | 0.1968 | 40 | 1.6497 |
1.657 | 0.2214 | 45 | 1.6460 |
1.7211 | 0.2460 | 50 | 1.6464 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10
Model tree for lesso10/fd43108d-7560-4a1e-9024-e2e46a9849eb
Base model
sethuiyer/Medichat-Llama3-8B