See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: facebook/opt-1.3b
bf16: true
chat_template: llama3
datasets:
- data_files:
- 211de44247c465c9_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/211de44247c465c9_train_data.json
type:
field_input: answers
field_instruction: question
field_output: gpt_answer_sentence
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: lesso10/ecf07a0a-0ea7-40be-9d4c-c383c267d70c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 4
mlflow_experiment_name: /tmp/211de44247c465c9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ffd6c183-b8db-41ee-8b46-cff544e19c49
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ffd6c183-b8db-41ee-8b46-cff544e19c49
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
ecf07a0a-0ea7-40be-9d4c-c383c267d70c
This model is a fine-tuned version of facebook/opt-1.3b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8671
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 48
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
7.4717 | 0.0211 | 1 | 1.9544 |
7.3375 | 0.1053 | 5 | 1.6823 |
5.1077 | 0.2105 | 10 | 1.2007 |
3.9201 | 0.3158 | 15 | 1.0344 |
3.5883 | 0.4211 | 20 | 0.9446 |
3.2048 | 0.5263 | 25 | 0.9079 |
3.1256 | 0.6316 | 30 | 0.8892 |
2.8894 | 0.7368 | 35 | 0.8778 |
3.8894 | 0.8421 | 40 | 0.8652 |
3.5179 | 0.9474 | 45 | 0.8671 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Model tree for lesso10/ecf07a0a-0ea7-40be-9d4c-c383c267d70c
Base model
facebook/opt-1.3b