See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: fxmarty/really-tiny-falcon-testing
bf16: true
chat_template: llama3
datasets:
- data_files:
- 2d75da559a891ff1_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/2d75da559a891ff1_train_data.json
type:
field_input: legal_term
field_instruction: judgment_chunk
field_output: summary
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: lesso10/a7c57234-fde2-414f-bd26-b954804d5948
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 4
mlflow_experiment_name: /tmp/2d75da559a891ff1_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1b97ca28-5569-4f21-bf43-913c71accac7
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1b97ca28-5569-4f21-bf43-913c71accac7
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
a7c57234-fde2-414f-bd26-b954804d5948
This model is a fine-tuned version of fxmarty/really-tiny-falcon-testing on the None dataset. It achieves the following results on the evaluation set:
- Loss: 11.0337
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
44.3435 | 0.0000 | 1 | 11.0855 |
44.321 | 0.0002 | 5 | 11.0825 |
44.278 | 0.0003 | 10 | 11.0690 |
44.2487 | 0.0005 | 15 | 11.0619 |
44.2342 | 0.0007 | 20 | 11.0534 |
44.1804 | 0.0008 | 25 | 11.0463 |
44.159 | 0.0010 | 30 | 11.0416 |
44.1507 | 0.0012 | 35 | 11.0378 |
44.1369 | 0.0013 | 40 | 11.0350 |
44.1435 | 0.0015 | 45 | 11.0339 |
44.1407 | 0.0017 | 50 | 11.0337 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Model tree for lesso10/a7c57234-fde2-414f-bd26-b954804d5948
Base model
fxmarty/really-tiny-falcon-testing