lesso04's picture
End of training
130887a verified
---
library_name: peft
license: gemma
base_model: unsloth/gemma-2-2b-it
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 53ebba41-01c2-4286-9575-76cecdb01cb3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<br>
# 53ebba41-01c2-4286-9575-76cecdb01cb3
This model is a fine-tuned version of [unsloth/gemma-2-2b-it](https://huggingface.co./unsloth/gemma-2-2b-it) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4255
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000204
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0001 | 1 | 3.0761 |
| 2.5419 | 0.0032 | 50 | 2.5246 |
| 2.5278 | 0.0064 | 100 | 2.5520 |
| 2.3569 | 0.0096 | 150 | 2.5619 |
| 2.4684 | 0.0128 | 200 | 2.4940 |
| 2.3954 | 0.0160 | 250 | 2.4938 |
| 2.4642 | 0.0192 | 300 | 2.4635 |
| 2.458 | 0.0225 | 350 | 2.4442 |
| 2.3964 | 0.0257 | 400 | 2.4310 |
| 2.4161 | 0.0289 | 450 | 2.4265 |
| 2.5162 | 0.0321 | 500 | 2.4255 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1