Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Vikhrmodels/Vikhr-7B-instruct_0.4
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 430d858d0bdfda9b_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/430d858d0bdfda9b_train_data.json
  type:
    field_input: source
    field_instruction: prompt_type
    field_output: input
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
ddp_timeout: 1800
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
group_by_length: true
hub_model_id: leixa/9b9d43e5-33d3-4e94-bd02-abe24628e1c8
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: constant
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 1350
micro_batch_size: 4
mlflow_experiment_name: /tmp/430d858d0bdfda9b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.999
  adam_epsilon: 1e-08
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
relora_prune_ratio: 0.9
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: acopia-grant
wandb_mode: online
wandb_name: 87bc3392-039b-4d29-aaaf-d93587233202
wandb_project: Gradients-On-112
wandb_run: your_name
wandb_runid: 87bc3392-039b-4d29-aaaf-d93587233202
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null

9b9d43e5-33d3-4e94-bd02-abe24628e1c8

This model is a fine-tuned version of Vikhrmodels/Vikhr-7B-instruct_0.4 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3433

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1350

Training results

Training Loss Epoch Step Validation Loss
No log 0.0001 1 2.3634
1.285 0.0094 150 1.4839
1.3043 0.0188 300 1.4308
1.2269 0.0282 450 1.4077
1.362 0.0376 600 1.3879
1.2501 0.0471 750 1.3733
1.2794 0.0565 900 1.3681
1.2039 0.0659 1050 1.3563
1.2251 0.0753 1200 1.3498
1.1948 0.0847 1350 1.3433

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for leixa/9b9d43e5-33d3-4e94-bd02-abe24628e1c8

Adapter
(228)
this model