See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 652c37adfdba156e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/652c37adfdba156e_train_data.json
type:
field_instruction: prompt
field_output: chosen
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: leixa/9b0ce33a-0e6b-4448-866c-d786f064ba67
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 8
mlflow_experiment_name: /tmp/652c37adfdba156e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: f3658745-2da6-44ad-aeb6-c4275a7f6186
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f3658745-2da6-44ad-aeb6-c4275a7f6186
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
9b0ce33a-0e6b-4448-866c-d786f064ba67
This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v0.6 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3730
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 288
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0104 | 1 | 1.9109 |
1.6823 | 0.25 | 24 | 1.6583 |
1.5419 | 0.5 | 48 | 1.5523 |
1.5028 | 0.75 | 72 | 1.4936 |
1.4711 | 1.0 | 96 | 1.4529 |
1.4095 | 1.25 | 120 | 1.4250 |
1.4025 | 1.5 | 144 | 1.4069 |
1.3641 | 1.75 | 168 | 1.3919 |
1.3483 | 2.0 | 192 | 1.3826 |
1.3427 | 2.25 | 216 | 1.3779 |
1.3168 | 2.5 | 240 | 1.3749 |
1.3198 | 2.75 | 264 | 1.3732 |
1.3255 | 3.0 | 288 | 1.3730 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Model tree for leixa/9b0ce33a-0e6b-4448-866c-d786f064ba67
Base model
TinyLlama/TinyLlama-1.1B-Chat-v0.6