Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/codellama-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 706a678ce8cb020e_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/706a678ce8cb020e_train_data.json
  type:
    field_instruction: problem
    field_output: solution
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: leixa/6e5d88e7-144b-47de-864b-1c432a3b7e0e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 150
micro_batch_size: 8
mlflow_experiment_name: /tmp/706a678ce8cb020e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: efbec3f1-a248-4038-bdc0-d981cab63b00
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: efbec3f1-a248-4038-bdc0-d981cab63b00
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

6e5d88e7-144b-47de-864b-1c432a3b7e0e

This model is a fine-tuned version of unsloth/codellama-7b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5602

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 150

Training results

Training Loss Epoch Step Validation Loss
No log 0.0114 1 0.7641
0.7434 0.1481 13 0.7393
0.6569 0.2963 26 0.6597
0.5742 0.4444 39 0.6107
0.5765 0.5926 52 0.5895
0.5732 0.7407 65 0.5786
0.5212 0.8889 78 0.5709
0.6014 1.0399 91 0.5663
0.5075 1.1880 104 0.5631
0.5133 1.3362 117 0.5611
0.5012 1.4843 130 0.5605
0.5177 1.6325 143 0.5602

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for leixa/6e5d88e7-144b-47de-864b-1c432a3b7e0e

Adapter
(137)
this model