See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/codellama-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 706a678ce8cb020e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/706a678ce8cb020e_train_data.json
type:
field_instruction: problem
field_output: solution
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: leixa/6e5d88e7-144b-47de-864b-1c432a3b7e0e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 150
micro_batch_size: 8
mlflow_experiment_name: /tmp/706a678ce8cb020e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: efbec3f1-a248-4038-bdc0-d981cab63b00
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: efbec3f1-a248-4038-bdc0-d981cab63b00
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
6e5d88e7-144b-47de-864b-1c432a3b7e0e
This model is a fine-tuned version of unsloth/codellama-7b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5602
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 150
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0114 | 1 | 0.7641 |
0.7434 | 0.1481 | 13 | 0.7393 |
0.6569 | 0.2963 | 26 | 0.6597 |
0.5742 | 0.4444 | 39 | 0.6107 |
0.5765 | 0.5926 | 52 | 0.5895 |
0.5732 | 0.7407 | 65 | 0.5786 |
0.5212 | 0.8889 | 78 | 0.5709 |
0.6014 | 1.0399 | 91 | 0.5663 |
0.5075 | 1.1880 | 104 | 0.5631 |
0.5133 | 1.3362 | 117 | 0.5611 |
0.5012 | 1.4843 | 130 | 0.5605 |
0.5177 | 1.6325 | 143 | 0.5602 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for leixa/6e5d88e7-144b-47de-864b-1c432a3b7e0e
Base model
unsloth/codellama-7b