legacy107's picture
update model card README.md
ae3767f
|
raw
history blame
11.9 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - bleu
model-index:
  - name: flan-t5-large-bottleneck-adapter-cpgQA
    results: []

flan-t5-large-bottleneck-adapter-cpgQA

This model is a fine-tuned version of google/flan-t5-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1175
  • Squad: {'exact_match': 74.03846153846153, 'f1': 92.73025873728763}
  • Bleu: {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Squad Bleu
0.4902 0.23 100 0.1695 {'exact_match': 59.61538461538461, 'f1': 88.39664262292322} {'bleu': 0.8611708764560243, 'precisions': [0.8791469194312796, 0.8657487091222031, 0.8552631578947368, 0.8448979591836735], 'brevity_penalty': 1.0, 'length_ratio': 1.0284321689683185, 'translation_length': 1266, 'reference_length': 1231}
0.3577 0.45 200 0.3243 {'exact_match': 47.11538461538461, 'f1': 75.97696037540817} {'bleu': 0.44597697779640594, 'precisions': [0.9202211690363349, 0.9087779690189329, 0.8994360902255639, 0.8948979591836734], 'brevity_penalty': 0.49236704919459706, 'length_ratio': 0.5852981969486823, 'translation_length': 1266, 'reference_length': 2163}
0.2751 0.68 300 0.1577 {'exact_match': 69.23076923076923, 'f1': 89.48763228957931} {'bleu': 0.8601252797928449, 'precisions': [0.8925750394944708, 0.878657487091222, 0.8656015037593985, 0.8561224489795919], 'brevity_penalty': 0.985104158338853, 'length_ratio': 0.9852140077821012, 'translation_length': 1266, 'reference_length': 1285}
0.5794 0.9 400 0.4970 {'exact_match': 32.69230769230769, 'f1': 67.89210636760458} {'bleu': 0.5849757239612657, 'precisions': [0.7282780410742496, 0.693631669535284, 0.6635338345864662, 0.6387755102040816], 'brevity_penalty': 0.8599604506941122, 'length_ratio': 0.8689087165408373, 'translation_length': 1266, 'reference_length': 1457}
0.2114 1.13 500 0.1245 {'exact_match': 67.3076923076923, 'f1': 89.96309177836906} {'bleu': 0.8997821698527838, 'precisions': [0.9360189573459715, 0.9285714285714286, 0.9238721804511278, 0.9204081632653062], 'brevity_penalty': 0.9704302027764995, 'length_ratio': 0.9708588957055214, 'translation_length': 1266, 'reference_length': 1304}
0.1765 1.36 600 0.1214 {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}
0.1822 1.58 700 0.1175 {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}
0.14 1.81 800 0.1175 {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}
0.1456 2.04 900 0.1175 {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}
0.1172 2.26 1000 0.1175 {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}
0.1376 2.49 1100 0.1175 {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}
0.1683 2.71 1200 0.1175 {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}
0.0717 2.94 1300 0.1175 {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}
0.1038 3.17 1400 0.1175 {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}
0.0812 3.39 1500 0.1175 {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}
0.1887 3.62 1600 0.1175 {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}
0.0824 3.85 1700 0.1175 {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}
0.1046 4.07 1800 0.1175 {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}
0.0952 4.3 1900 0.1175 {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}
0.1054 4.52 2000 0.1175 {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}
0.1603 4.75 2100 0.1175 {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}
0.1643 4.98 2200 0.1175 {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}
0.1326 5.2 2300 0.1175 {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}
0.1922 5.43 2400 0.1175 {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}
0.1154 5.66 2500 0.1175 {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}
0.07 5.88 2600 0.1175 {'exact_match': 74.03846153846153, 'f1': 92.73025873728763} {'bleu': 0.9331748310720637, 'precisions': [0.9447077409162717, 0.9380378657487092, 0.9332706766917294, 0.9285714285714286], 'brevity_penalty': 0.9968454284876576, 'length_ratio': 0.9968503937007874, 'translation_length': 1266, 'reference_length': 1270}

Framework versions

  • Transformers 4.26.1
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3