learn3r's picture
End of training
4d4ae1d
metadata
base_model: >-
  /home/co-ou1/rds/hpc-work/transformers/examples/pytorch/summarization/longt5_xl_gov_report_bp_10/checkpoint-477
tags:
  - generated_from_trainer
datasets:
  - learn3r/gov_report_memsum_oracle
metrics:
  - rouge
model-index:
  - name: longt5_xl_gov_report_bp_10_continue
    results:
      - task:
          name: Summarization
          type: summarization
        dataset:
          name: learn3r/gov_report_memsum_oracle
          type: learn3r/gov_report_memsum_oracle
        metrics:
          - name: Rouge1
            type: rouge
            value: 71.9439

longt5_xl_gov_report_bp_10_continue

This model is a fine-tuned version of /home/co-ou1/rds/hpc-work/transformers/examples/pytorch/summarization/longt5_xl_gov_report_bp_10/checkpoint-477 on the learn3r/gov_report_memsum_oracle dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4878
  • Rouge1: 71.9439
  • Rouge2: 43.7031
  • Rougel: 41.8301
  • Rougelsum: 69.1853
  • Gen Len: 833.0319

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 4.0

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.6226 1.0 68 1.4878 71.9439 43.7031 41.8301 69.1853 833.0319
0.4983 1.99 136 1.5908 70.6191 43.2627 42.581 68.0871 627.5031
0.4175 2.99 204 1.6407 71.6704 43.1655 41.9746 68.992 737.4352
0.3958 3.99 272 1.8739 70.7685 42.5122 41.7454 68.0785 671.4938

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3