YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co./docs/hub/model-cards#model-card-metadata)

Approach

This model of Mamba architecture has been pre-trained on approximately 400B tokens of Chinese and English corpora, followed by fine-tuning on Chinese and English instructions.

Usage

import torch

from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
from transformers import AutoTokenizer

repo_id = 'mamba-1.4b-aquila-400b-sft'
device = f"cuda:0"
model = MambaLMHeadModel.from_pretrained(repo_id, dtype=torch.bfloat16, device=device)
model.eval()

tokenizer = AutoTokenizer.from_pretrained(repo_id)
text = "写一首春节主题的七言绝句"
prompt = f"A chat between a curious human and an artificial intelligence assistant. "
prompt += f"The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n"
prompt += f"<|startofpiece|>{text}<|endofpiece|>"
tokens = tokenizer.encode_plus(prompt, truncation=False)["input_ids"]
tokens = torch.tensor(tokens)[None,].to(device)
with torch.no_grad():
    input_length = len(tokens[0])
    out_ids = model.generate(input_ids=tokens, max_length=input_length+200, temperature=1.0,
                             top_p=0.95, eos_token_id=tokenizer.eos_token_id, cg=True, top_k=15)
    out_ids = out_ids[0][input_length:].cpu().numpy()
    out_text = tokenizer.decode(out_ids.tolist())
    print(out_text)

花红柳绿庆春节, 爆竹声声笑语添。 团圆喜乐连宵庆, 福气满门满地欢。

References

The Mamba architecture was introduced in Mamba: Linear-Time Sequence Modeling with Selective State Spaces.

The official implementation is here: https://github.com/state-spaces/mamba/tree/main

Downloads last month
75
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.