text_shortening_model_v80

This model is a fine-tuned version of t5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1772
  • Bert precision: 0.8996
  • Bert recall: 0.9009
  • Bert f1-score: 0.8998
  • Average word count: 6.8393
  • Max word count: 16
  • Min word count: 3
  • Average token count: 11.092
  • % shortened texts with length > 12: 0.9816

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Bert precision Bert recall Bert f1-score Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.3549 1.0 30 1.0184 0.8861 0.887 0.886 7.016 18 2 11.2061 2.6994
0.9772 2.0 60 0.9395 0.889 0.8903 0.8892 6.9436 16 2 11.1276 1.8405
0.8398 3.0 90 0.9211 0.8904 0.8916 0.8906 6.9534 16 2 11.119 2.3313
0.7412 4.0 120 0.9235 0.8926 0.8945 0.8931 6.9239 16 2 11.1926 1.5951
0.6652 5.0 150 0.9173 0.8936 0.8968 0.8947 7.0442 16 3 11.4135 1.5951
0.5992 6.0 180 0.9270 0.8962 0.8982 0.8968 6.9485 16 3 11.2209 1.8405
0.5381 7.0 210 0.9565 0.8948 0.8962 0.8951 6.8209 16 2 11.1043 1.3497
0.4899 8.0 240 0.9812 0.8956 0.8984 0.8966 7.0098 16 2 11.2282 1.9632
0.4528 9.0 270 0.9842 0.8954 0.8979 0.8962 6.9791 16 3 11.2773 1.7178
0.4233 10.0 300 1.0057 0.897 0.8977 0.8969 6.8294 16 2 11.0589 1.5951
0.3971 11.0 330 1.0276 0.8967 0.8976 0.8967 6.8761 16 2 11.1411 1.1043
0.3713 12.0 360 1.0316 0.8962 0.8958 0.8955 6.7583 16 2 10.9816 1.1043
0.3428 13.0 390 1.0775 0.898 0.8982 0.8977 6.838 16 2 11.092 1.1043
0.3256 14.0 420 1.0831 0.8987 0.8993 0.8985 6.8552 16 2 11.1141 1.227
0.3116 15.0 450 1.0982 0.8979 0.899 0.898 6.8638 16 2 11.119 1.1043
0.2958 16.0 480 1.1273 0.8965 0.8991 0.8974 6.9546 16 3 11.238 1.5951
0.2838 17.0 510 1.1205 0.8984 0.9003 0.8989 6.9583 16 3 11.227 1.4724
0.2683 18.0 540 1.1435 0.8978 0.8991 0.898 6.8847 16 2 11.1178 1.227
0.2594 19.0 570 1.1495 0.899 0.8986 0.8983 6.7939 16 2 11.0307 0.8589
0.2522 20.0 600 1.1621 0.8993 0.8992 0.8988 6.7767 16 3 11.0294 0.7362
0.2457 21.0 630 1.1693 0.8991 0.9017 0.9 6.9006 16 3 11.2 0.9816
0.2442 22.0 660 1.1728 0.8986 0.9008 0.8992 6.8773 16 3 11.1644 0.9816
0.235 23.0 690 1.1740 0.8986 0.9002 0.899 6.8564 16 3 11.1178 0.9816
0.2319 24.0 720 1.1751 0.8995 0.9008 0.8997 6.8417 16 3 11.0908 0.9816
0.2315 25.0 750 1.1772 0.8996 0.9009 0.8998 6.8393 16 3 11.092 0.9816

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v80

Base model

google-t5/t5-base
Finetuned
(445)
this model