Edit model card

text_shortening_model_v77

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4183
  • Bert precision: 0.8989
  • Bert recall: 0.9008
  • Bert f1-score: 0.8994
  • Average word count: 6.9571
  • Max word count: 15
  • Min word count: 2
  • Average token count: 11.2896
  • % shortened texts with length > 12: 2.0859

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Bert precision Bert recall Bert f1-score Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.6557 1.0 30 1.2281 0.8905 0.8844 0.887 6.5926 15 1 10.4699 1.4724
1.2524 2.0 60 1.1200 0.8933 0.8902 0.8913 6.7227 15 2 10.8294 0.9816
1.1024 3.0 90 1.0914 0.8952 0.8931 0.8937 6.7706 16 2 10.811 1.1043
0.9921 4.0 120 1.0805 0.8935 0.8943 0.8935 6.9141 17 2 11.0454 1.3497
0.8865 5.0 150 1.1025 0.8971 0.8949 0.8956 6.7607 16 2 10.9828 1.4724
0.8273 6.0 180 1.1039 0.9005 0.8989 0.8993 6.7583 16 2 10.8982 1.9632
0.7585 7.0 210 1.0975 0.8981 0.8991 0.8982 6.9497 16 3 11.135 2.2086
0.7086 8.0 240 1.1068 0.8989 0.8971 0.8976 6.7374 15 2 10.9411 1.1043
0.6541 9.0 270 1.1340 0.898 0.902 0.8996 7.1239 17 2 11.4258 2.8221
0.6167 10.0 300 1.1316 0.8981 0.8996 0.8984 6.962 16 2 11.1436 2.6994
0.5817 11.0 330 1.1507 0.8984 0.8995 0.8985 6.9264 16 2 11.2466 2.3313
0.547 12.0 360 1.1416 0.899 0.8993 0.8988 6.8601 15 2 11.1865 1.5951
0.5181 13.0 390 1.1775 0.8987 0.8993 0.8986 6.8969 15 3 11.1571 1.8405
0.4874 14.0 420 1.2131 0.8969 0.8999 0.8979 7.0638 16 3 11.3877 2.454
0.461 15.0 450 1.2263 0.9009 0.9001 0.9001 6.8871 15 2 11.1497 1.1043
0.4449 16.0 480 1.2215 0.898 0.8998 0.8984 7.0184 15 2 11.3509 2.2086
0.4148 17.0 510 1.2528 0.8991 0.8997 0.899 6.8748 15 2 11.1939 1.227
0.3967 18.0 540 1.2512 0.8989 0.9006 0.8994 6.9853 15 2 11.3227 1.3497
0.385 19.0 570 1.2683 0.898 0.8992 0.8982 6.9755 17 2 11.3227 2.454
0.3667 20.0 600 1.2804 0.898 0.8982 0.8976 6.8528 15 2 11.1337 1.7178
0.3579 21.0 630 1.2892 0.9006 0.899 0.8993 6.762 15 2 11.0761 1.8405
0.3358 22.0 660 1.3081 0.8983 0.8996 0.8985 6.8957 15 2 11.3166 1.5951
0.3261 23.0 690 1.3189 0.8988 0.8997 0.8988 6.9571 15 2 11.2491 2.6994
0.3222 24.0 720 1.3116 0.8975 0.9 0.8983 7.027 15 2 11.3926 2.9448
0.2977 25.0 750 1.3295 0.8988 0.9005 0.8992 6.9755 15 2 11.308 1.9632
0.2977 26.0 780 1.3368 0.8972 0.9009 0.8986 7.0442 15 2 11.4184 2.5767
0.2795 27.0 810 1.3515 0.9015 0.9025 0.9015 6.9117 15 2 11.2601 2.2086
0.2758 28.0 840 1.3645 0.9018 0.9013 0.9011 6.8466 15 2 11.1264 1.9632
0.2696 29.0 870 1.3675 0.899 0.9002 0.8991 6.9399 15 2 11.2687 1.9632
0.261 30.0 900 1.3896 0.8986 0.901 0.8993 7.0282 17 2 11.3902 2.0859
0.2632 31.0 930 1.3802 0.8971 0.8988 0.8975 6.9546 15 2 11.2528 2.3313
0.2488 32.0 960 1.3919 0.8998 0.9011 0.9 6.9656 15 2 11.2748 2.454
0.2467 33.0 990 1.3973 0.8996 0.9013 0.9 6.9755 15 2 11.3031 2.2086
0.2384 34.0 1020 1.4041 0.8988 0.9001 0.899 6.9865 15 2 11.2785 2.3313
0.2369 35.0 1050 1.4044 0.8986 0.9005 0.8991 6.9595 15 2 11.2785 1.9632
0.2307 36.0 1080 1.4109 0.8985 0.9 0.8988 6.9436 15 2 11.2712 2.0859
0.2285 37.0 1110 1.4118 0.8987 0.8995 0.8987 6.9067 15 2 11.2037 1.7178
0.2294 38.0 1140 1.4171 0.8992 0.9007 0.8995 6.9436 15 2 11.2712 1.9632
0.2294 39.0 1170 1.4188 0.8988 0.9008 0.8994 6.9656 15 2 11.3006 2.2086
0.2261 40.0 1200 1.4183 0.8989 0.9008 0.8994 6.9571 15 2 11.2896 2.0859

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v77

Base model

google-t5/t5-small
Finetuned
(1512)
this model