ldos's picture
End of training
0d0f91a
|
raw
history blame
10.2 kB
metadata
license: apache-2.0
base_model: t5-small
tags:
  - generated_from_trainer
model-index:
  - name: text_shortening_model_v75
    results: []

text_shortening_model_v75

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2113
  • Bert precision: 0.8889
  • Bert recall: 0.8883
  • Bert f1-score: 0.8881
  • Average word count: 6.8466
  • Max word count: 15
  • Min word count: 1
  • Average token count: 10.892
  • % shortened texts with length > 12: 1.9632

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Bert precision Bert recall Bert f1-score Average word count Max word count Min word count Average token count % shortened texts with length > 12
2.4857 1.0 30 1.9604 0.8298 0.8444 0.8359 9.1436 19 1 13.7337 14.2331
2.1772 2.0 60 1.7312 0.8337 0.839 0.8349 8.1264 19 1 12.3264 10.5521
1.9897 3.0 90 1.6036 0.8513 0.8528 0.8508 7.6528 19 1 11.8748 8.3436
1.8748 4.0 120 1.5274 0.8616 0.8583 0.8589 7.1988 17 1 11.4368 6.0123
1.7948 5.0 150 1.4678 0.8709 0.8669 0.868 7.0086 17 1 11.1914 4.4172
1.7436 6.0 180 1.4245 0.8763 0.8726 0.8737 6.9681 16 1 11.1387 3.8037
1.6914 7.0 210 1.3948 0.8808 0.8792 0.8793 6.9706 18 1 11.0773 3.9264
1.6484 8.0 240 1.3716 0.8846 0.8814 0.8824 6.789 15 2 10.8687 2.9448
1.6177 9.0 270 1.3534 0.8858 0.8827 0.8836 6.8294 16 2 10.8712 3.0675
1.6034 10.0 300 1.3371 0.8854 0.8826 0.8834 6.8528 16 2 10.865 2.9448
1.5696 11.0 330 1.3237 0.8863 0.8842 0.8847 6.8393 16 2 10.8577 2.6994
1.5474 12.0 360 1.3115 0.8874 0.8844 0.8853 6.7669 16 2 10.7742 2.5767
1.5354 13.0 390 1.3011 0.8867 0.8836 0.8846 6.7607 16 2 10.7644 2.3313
1.5173 14.0 420 1.2916 0.8872 0.8834 0.8847 6.7067 16 2 10.7117 2.0859
1.5061 15.0 450 1.2822 0.8873 0.8833 0.8848 6.6969 16 2 10.6945 1.9632
1.4861 16.0 480 1.2742 0.8882 0.8846 0.8858 6.692 16 2 10.7043 1.5951
1.4793 17.0 510 1.2673 0.8881 0.8848 0.8859 6.719 16 1 10.7325 1.9632
1.4736 18.0 540 1.2621 0.8888 0.8856 0.8867 6.7399 16 1 10.7571 1.9632
1.4592 19.0 570 1.2563 0.8889 0.8863 0.8871 6.7497 16 1 10.7755 1.9632
1.459 20.0 600 1.2514 0.8885 0.8863 0.8868 6.773 16 1 10.7902 1.9632
1.4446 21.0 630 1.2472 0.8883 0.8859 0.8865 6.7571 16 1 10.7546 1.8405
1.4324 22.0 660 1.2431 0.888 0.8864 0.8866 6.7779 16 1 10.7853 1.8405
1.431 23.0 690 1.2396 0.8881 0.8866 0.8868 6.7828 16 1 10.8098 1.8405
1.4233 24.0 720 1.2358 0.8885 0.8869 0.8872 6.784 16 1 10.8123 1.9632
1.4218 25.0 750 1.2322 0.8887 0.8874 0.8875 6.8135 16 1 10.8417 1.8405
1.4086 26.0 780 1.2295 0.8885 0.8878 0.8876 6.8356 16 1 10.8982 1.9632
1.4104 27.0 810 1.2267 0.8883 0.8877 0.8875 6.8491 16 1 10.9166 1.9632
1.4046 28.0 840 1.2242 0.888 0.8877 0.8873 6.8577 16 1 10.9411 1.9632
1.4034 29.0 870 1.2222 0.8882 0.8881 0.8876 6.8626 16 1 10.9436 1.9632
1.3942 30.0 900 1.2204 0.8883 0.8881 0.8877 6.8577 16 1 10.935 2.0859
1.3909 31.0 930 1.2182 0.8885 0.8881 0.8878 6.8368 15 1 10.908 1.8405
1.385 32.0 960 1.2167 0.8889 0.8884 0.8882 6.838 15 1 10.9006 1.8405
1.3833 33.0 990 1.2149 0.889 0.8884 0.8882 6.8368 15 1 10.8945 1.8405
1.3831 34.0 1020 1.2139 0.8891 0.8885 0.8883 6.8454 15 1 10.9018 1.8405
1.3811 35.0 1050 1.2129 0.8891 0.8884 0.8882 6.8356 15 1 10.8908 1.8405
1.3869 36.0 1080 1.2124 0.8891 0.8883 0.8881 6.8294 15 1 10.8785 1.8405
1.3696 37.0 1110 1.2120 0.889 0.8881 0.8881 6.8233 15 1 10.8663 1.8405
1.3791 38.0 1140 1.2116 0.8889 0.8881 0.888 6.8307 15 1 10.8748 1.8405
1.3755 39.0 1170 1.2113 0.8889 0.8881 0.888 6.8331 15 1 10.8773 1.8405
1.3668 40.0 1200 1.2113 0.8889 0.8883 0.8881 6.8466 15 1 10.892 1.9632

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3