|
--- |
|
license: mit |
|
base_model: facebook/bart-large-xsum |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: text_shortening_model_v45 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# text_shortening_model_v45 |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co./facebook/bart-large-xsum) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 26.8982 |
|
- Rouge1: 0.0 |
|
- Rouge2: 0.0 |
|
- Rougel: 0.0 |
|
- Rougelsum: 0.0 |
|
- Bert precision: 0.6649 |
|
- Bert recall: 0.672 |
|
- Average word count: 1.0 |
|
- Max word count: 1 |
|
- Min word count: 1 |
|
- Average token count: 62.0 |
|
- % shortened texts with length > 12: 0.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------------:|:-----------:|:------------------:|:--------------:|:--------------:|:-------------------:|:----------------------------------:| |
|
| 3.3791 | 1.0 | 83 | 6.7318 | 0.0982 | 0.0 | 0.0972 | 0.0969 | 0.6855 | 0.6599 | 1.2937 | 2 | 1 | 16.7619 | 0.0 | |
|
| 2.8727 | 2.0 | 166 | 10.3841 | 0.0 | 0.0 | 0.0 | 0.0 | 0.674 | 0.6911 | 3.0 | 3 | 3 | 62.0 | 0.0 | |
|
| 2.7805 | 3.0 | 249 | 10.0261 | 0.0345 | 0.0 | 0.0346 | 0.0345 | 0.6746 | 0.6819 | 2.0 | 2 | 2 | 62.0 | 0.0 | |
|
| 2.7183 | 4.0 | 332 | 9.5191 | 0.0 | 0.0 | 0.0 | 0.0 | 0.673 | 0.6736 | 1.0 | 1 | 1 | 62.0 | 0.0 | |
|
| 2.7086 | 5.0 | 415 | 10.4466 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6568 | 0.6648 | 1.0 | 1 | 1 | 62.0 | 0.0 | |
|
| 2.6474 | 6.0 | 498 | 13.9665 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6641 | 0.6709 | 1.0 | 1 | 1 | 62.0 | 0.0 | |
|
| 2.63 | 7.0 | 581 | 13.3621 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6457 | 0.6701 | 1.0 | 1 | 1 | 62.0 | 0.0 | |
|
| 2.5998 | 8.0 | 664 | 13.0602 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6618 | 0.6672 | 1.0 | 1 | 1 | 62.0 | 0.0 | |
|
| 2.5689 | 9.0 | 747 | 15.0760 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6591 | 0.6651 | 1.0 | 1 | 1 | 62.0 | 0.0 | |
|
| 2.5508 | 10.0 | 830 | 15.6936 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6649 | 0.6716 | 1.0 | 1 | 1 | 62.0 | 0.0 | |
|
| 2.5298 | 11.0 | 913 | 16.8446 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6604 | 0.6648 | 1.0 | 1 | 1 | 62.0 | 0.0 | |
|
| 2.5091 | 12.0 | 996 | 21.0673 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6721 | 0.6702 | 1.0 | 1 | 1 | 62.0 | 0.0 | |
|
| 2.5019 | 13.0 | 1079 | 25.5628 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6605 | 0.67 | 1.0 | 1 | 1 | 62.0 | 0.0 | |
|
| 2.4826 | 14.0 | 1162 | 25.1203 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6725 | 0.6666 | 1.0 | 1 | 1 | 62.0 | 0.0 | |
|
| 2.4693 | 15.0 | 1245 | 26.8982 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6649 | 0.672 | 1.0 | 1 | 1 | 62.0 | 0.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.1 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|