Edit model card

text_shortening_model_v41

This model is a fine-tuned version of facebook/bart-large-xsum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.7205
  • Rouge1: 0.4471
  • Rouge2: 0.2088
  • Rougel: 0.3939
  • Rougelsum: 0.3941
  • Bert precision: 0.8647
  • Bert recall: 0.8624
  • Average word count: 8.6517
  • Max word count: 18
  • Min word count: 4
  • Average token count: 16.5045
  • % shortened texts with length > 12: 5.7057

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
2.424 1.0 73 2.2763 0.4466 0.2286 0.3969 0.3973 0.8628 0.8607 8.4805 17 5 14.6967 3.6036
1.331 2.0 146 2.1237 0.4671 0.2385 0.4119 0.4124 0.86 0.8702 9.7117 20 4 16.7838 14.4144
0.9725 3.0 219 1.9947 0.448 0.2384 0.4004 0.4025 0.8603 0.8627 8.8649 16 5 15.8709 5.7057
0.7753 4.0 292 2.2302 0.4435 0.2201 0.3983 0.3991 0.8653 0.8588 8.1141 16 5 15.5526 1.8018
0.6017 5.0 365 2.1392 0.4293 0.2142 0.383 0.3836 0.8593 0.8604 8.6156 17 4 14.1982 3.3033
0.4911 6.0 438 2.4747 0.4166 0.1882 0.365 0.3668 0.8582 0.8556 8.4234 14 5 14.4024 3.6036
0.6947 7.0 511 2.6372 0.3894 0.1904 0.3527 0.3534 0.8471 0.8477 8.5165 14 4 16.6607 4.2042
0.5839 8.0 584 2.6038 0.3641 0.1627 0.3272 0.3276 0.8464 0.8402 7.7508 13 4 15.2342 0.6006
0.4668 9.0 657 2.7711 0.4015 0.1904 0.3627 0.3626 0.8537 0.8517 8.8889 17 4 16.2402 3.9039
0.4539 10.0 730 2.8819 0.4 0.1903 0.353 0.3538 0.8526 0.8519 8.6156 15 5 16.1652 3.9039
0.4018 11.0 803 2.8273 0.3799 0.1764 0.3404 0.3407 0.8432 0.8454 8.7177 17 4 17.0661 3.6036
0.2764 12.0 876 2.9767 0.3888 0.1825 0.3504 0.3509 0.8526 0.8475 8.4354 13 5 16.015 2.1021
0.2338 13.0 949 2.8883 0.4184 0.202 0.3714 0.3714 0.852 0.8585 9.3754 17 5 15.8709 8.4084
0.1878 14.0 1022 3.1069 0.4302 0.1966 0.3782 0.3791 0.8616 0.8573 8.4324 15 4 16.2492 3.3033
0.1608 15.0 1095 2.8510 0.4461 0.2151 0.392 0.3925 0.8627 0.8625 8.7598 19 4 16.1471 5.7057
0.1416 16.0 1168 3.0792 0.4246 0.1983 0.3735 0.3735 0.8591 0.8568 8.6637 16 5 16.3303 7.5075
0.1507 17.0 1241 3.2058 0.4336 0.2016 0.379 0.3796 0.8593 0.8589 8.9129 17 5 16.6697 5.1051
0.108 18.0 1314 3.0551 0.4485 0.2248 0.4002 0.4006 0.8645 0.8608 8.2492 14 5 15.967 3.6036
0.0756 19.0 1387 3.1943 0.4439 0.2167 0.3919 0.3925 0.8652 0.8608 8.4865 15 5 15.8919 3.9039
0.104 20.0 1460 3.1156 0.4411 0.2035 0.3894 0.3903 0.8644 0.8612 8.5135 16 5 16.4294 6.006
0.0716 21.0 1533 3.4040 0.4389 0.201 0.3824 0.3838 0.8632 0.8614 8.7508 16 4 16.5075 6.006
0.0576 22.0 1606 3.4264 0.4476 0.2104 0.3902 0.391 0.8657 0.8629 8.5405 16 4 16.4144 6.6066
0.041 23.0 1679 3.5711 0.447 0.2108 0.3931 0.393 0.8639 0.8619 8.5976 18 4 16.4264 7.2072
0.0355 24.0 1752 3.6294 0.4509 0.215 0.3981 0.3989 0.8652 0.8632 8.6186 18 4 16.4985 6.006
0.0313 25.0 1825 3.7205 0.4471 0.2088 0.3939 0.3941 0.8647 0.8624 8.6517 18 4 16.5045 5.7057

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v41

Finetuned
(50)
this model