text_shortening_model_v39

This model is a fine-tuned version of facebook/bart-large-xsum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8730
  • Rouge1: 0.4929
  • Rouge2: 0.2546
  • Rougel: 0.4351
  • Rougelsum: 0.4353
  • Bert precision: 0.8698
  • Bert recall: 0.8762
  • Average word count: 8.8348
  • Max word count: 17
  • Min word count: 4
  • Average token count: 16.5796
  • % shortened texts with length > 12: 8.4084

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
0.9582 1.0 73 1.4062 0.5229 0.2983 0.4739 0.4738 0.875 0.8853 8.9039 17 4 15.0811 9.009
0.5598 2.0 146 1.4819 0.5053 0.2806 0.456 0.4561 0.8723 0.879 8.6486 14 5 14.2703 1.5015
0.3791 3.0 219 1.7718 0.5174 0.2882 0.4532 0.4539 0.8705 0.8834 9.6456 18 5 17.7027 16.5165
0.3748 4.0 292 2.1513 0.3078 0.1184 0.2773 0.278 0.8215 0.8336 9.5375 18 4 17.1441 9.9099
0.2837 5.0 365 1.6757 0.4999 0.2661 0.4487 0.4489 0.8732 0.8766 8.3844 16 4 15.1892 6.6066
0.1885 6.0 438 1.8005 0.4938 0.2619 0.4437 0.4439 0.8729 0.8763 8.5526 14 5 14.994 1.5015
0.1799 7.0 511 1.8427 0.4986 0.2752 0.4455 0.4463 0.8664 0.8796 9.4384 20 5 15.6697 11.4114
0.1638 8.0 584 2.0234 0.5206 0.2854 0.4632 0.4642 0.8774 0.8844 9.1682 18 4 16.2132 9.9099
0.1247 9.0 657 1.9158 0.486 0.2628 0.4326 0.4339 0.8707 0.8758 8.7327 17 4 15.3093 6.6066
0.1059 10.0 730 2.2355 0.5127 0.2825 0.4578 0.4577 0.875 0.8827 9.045 17 4 16.5586 8.7087
0.1104 11.0 803 2.2555 0.5095 0.2698 0.4514 0.4511 0.8762 0.8815 8.7928 17 4 16.3123 8.7087
0.1196 12.0 876 2.3329 0.507 0.2692 0.453 0.454 0.8746 0.8795 8.8228 15 5 16.1862 5.4054
0.093 13.0 949 2.2657 0.5137 0.2748 0.4545 0.4543 0.8733 0.8801 8.7988 16 4 16.012 7.8078
0.0626 14.0 1022 2.5004 0.5014 0.2677 0.4432 0.4435 0.8725 0.8775 8.7508 16 5 16.4535 6.9069
0.0534 15.0 1095 2.4192 0.5031 0.27 0.4467 0.447 0.8711 0.8784 8.8438 19 4 16.1411 9.3093
0.0475 16.0 1168 2.5800 0.4891 0.2553 0.4313 0.4315 0.8689 0.8753 8.8408 18 4 16.5045 8.7087
0.0399 17.0 1241 2.6858 0.5021 0.2615 0.4452 0.445 0.8727 0.8782 8.7808 17 4 16.3844 7.2072
0.0296 18.0 1314 2.6646 0.4992 0.2666 0.4466 0.4463 0.8726 0.8764 8.5706 17 4 16.1111 4.8048
0.0286 19.0 1387 2.7496 0.5023 0.2648 0.4451 0.445 0.8721 0.8781 8.7868 17 4 16.3063 6.6066
0.026 20.0 1460 2.8730 0.4929 0.2546 0.4351 0.4353 0.8698 0.8762 8.8348 17 4 16.5796 8.4084

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v39

Finetuned
(50)
this model