Edit model card

text_shortening_model_v37

This model is a fine-tuned version of facebook/bart-large-xsum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9472
  • Rouge1: 0.4923
  • Rouge2: 0.2809
  • Rougel: 0.4462
  • Rougelsum: 0.4468
  • Bert precision: 0.8731
  • Bert recall: 0.8773
  • Average word count: 9.1021
  • Max word count: 15
  • Min word count: 5
  • Average token count: 16.8198
  • % shortened texts with length > 12: 8.7087

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.5911 1.0 73 1.8586 0.4823 0.2756 0.4416 0.4423 0.8661 0.8758 8.9399 21 4 16.9489 7.8078
0.9246 2.0 146 2.2274 0.4039 0.2049 0.3771 0.3764 0.8526 0.855 8.0991 13 4 14.6006 0.6006
0.7574 3.0 219 1.8752 0.4463 0.2263 0.4072 0.4071 0.8629 0.8654 8.3934 14 5 14.3303 3.003
0.6131 4.0 292 1.8338 0.4896 0.2691 0.4451 0.4456 0.8747 0.8711 7.982 13 4 13.9249 0.3003
0.4422 5.0 365 1.8257 0.492 0.2727 0.4499 0.4504 0.8734 0.875 8.5165 16 5 14.4595 3.003
0.4227 6.0 438 2.1249 0.4666 0.2475 0.418 0.4178 0.8657 0.8697 9.3874 16 4 16.9399 8.4084
0.3714 7.0 511 2.1010 0.4838 0.274 0.436 0.4364 0.869 0.8754 9.4264 16 5 14.9369 9.009
0.2638 8.0 584 2.0803 0.489 0.2799 0.4404 0.4404 0.8701 0.8751 8.976 15 4 15.5736 8.4084
0.2103 9.0 657 2.1093 0.4888 0.2722 0.4381 0.438 0.872 0.8751 9.1952 16 5 16.7447 9.9099
0.1475 10.0 730 2.3159 0.4684 0.2597 0.4243 0.4244 0.8632 0.8721 9.4234 15 5 16.8288 11.7117
0.122 11.0 803 2.4090 0.4845 0.2729 0.4421 0.4427 0.8721 0.8748 8.8018 16 5 16.4264 5.7057
0.0915 12.0 876 2.6598 0.4838 0.2691 0.4376 0.437 0.8698 0.8742 9.1652 16 5 16.9009 10.2102
0.073 13.0 949 2.5266 0.4973 0.2861 0.4479 0.4495 0.8743 0.8776 9.0631 16 5 16.5796 8.4084
0.0526 14.0 1022 2.7673 0.4955 0.2821 0.4464 0.4463 0.8716 0.8791 9.4685 16 5 17.2012 10.5105
0.042 15.0 1095 2.9472 0.4923 0.2809 0.4462 0.4468 0.8731 0.8773 9.1021 15 5 16.8198 8.7087

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v37

Finetuned
(50)
this model