Edit model card

text_shortening_model_v36

This model is a fine-tuned version of facebook/bart-large-xsum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9367
  • Rouge1: 0.4747
  • Rouge2: 0.2555
  • Rougel: 0.4212
  • Rougelsum: 0.4204
  • Bert precision: 0.8696
  • Bert recall: 0.87
  • Average word count: 8.6396
  • Max word count: 17
  • Min word count: 4
  • Average token count: 16.6216
  • % shortened texts with length > 12: 6.3063

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.571 1.0 73 2.1904 0.4703 0.2572 0.4224 0.4216 0.8718 0.8704 8.2583 14 3 14.2973 1.5015
0.8809 2.0 146 1.9224 0.4588 0.2414 0.4177 0.417 0.8734 0.8673 8.2492 22 3 15.8078 3.9039
0.7135 3.0 219 2.7437 0.2535 0.082 0.2289 0.2294 0.8131 0.8149 8.4324 11 5 14.973 0.0
0.5646 4.0 292 2.0495 0.4689 0.249 0.4155 0.4156 0.8653 0.8736 9.8438 20 4 18.0961 21.3213
0.4158 5.0 365 2.0101 0.4707 0.2539 0.4241 0.4243 0.8688 0.8725 8.9009 14 4 14.7988 4.2042
0.3445 6.0 438 2.0642 0.4606 0.255 0.4133 0.4132 0.866 0.8705 9.0991 15 4 14.955 6.3063
0.2473 7.0 511 2.2675 0.4668 0.2441 0.4137 0.413 0.8683 0.8694 8.7177 19 3 16.5766 9.3093
0.2084 8.0 584 2.4474 0.4793 0.2608 0.4256 0.4257 0.8701 0.8741 9.1021 17 4 17.048 9.9099
0.1703 9.0 657 2.3961 0.4754 0.2609 0.4253 0.4253 0.8676 0.8749 9.2943 17 4 17.2402 11.4114
0.1293 10.0 730 2.4721 0.4581 0.2463 0.409 0.4082 0.8657 0.8671 8.7057 18 4 16.3514 6.9069
0.1312 11.0 803 2.4027 0.4667 0.2497 0.4117 0.4113 0.868 0.8683 8.4925 18 4 15.4294 5.1051
0.1424 12.0 876 2.5041 0.476 0.2506 0.4214 0.4214 0.8715 0.8699 8.6186 18 4 16.1862 6.006
0.0926 13.0 949 2.7011 0.4723 0.2582 0.4238 0.4227 0.8695 0.8701 8.6096 19 4 16.4505 5.7057
0.0663 14.0 1022 2.8149 0.467 0.2504 0.4157 0.4153 0.8674 0.8675 8.6336 17 4 16.4985 5.1051
0.0684 15.0 1095 2.9367 0.4747 0.2555 0.4212 0.4204 0.8696 0.87 8.6396 17 4 16.6216 6.3063

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v36

Finetuned
(50)
this model