Edit model card

bert_classifier_sped_transactions

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1678
  • Precision: 0.6500
  • Recall: 0.3266
  • F1 Unweighted: 0.4347
  • F1 Weighted: 0.9451
  • F05 Unweighted: 0.5426
  • F05 Weighted: 0.9432
  • Pr Auc: 0.4367
  • Roc Auc: 0.6581

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Unweighted F1 Weighted F05 Unweighted F05 Weighted Pr Auc Roc Auc
0.1772 0.0864 5000 0.1694 0.6414 0.3224 0.4291 0.9445 0.5354 0.9425 0.4278 0.6559
0.2169 0.1728 10000 0.2158 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2124 0.2593 15000 0.2157 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0560 0.5
0.2211 0.3457 20000 0.2176 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2149 0.4321 25000 0.2155 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2146 0.5185 30000 0.2177 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2167 0.6050 35000 0.2176 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2143 0.6914 40000 0.2166 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2187 0.7778 45000 0.2156 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2167 0.8642 50000 0.2157 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.22 0.9507 55000 0.2160 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2146 1.0371 60000 0.2158 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2142 1.1235 65000 0.2172 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2205 1.2100 70000 0.2153 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2244 1.2964 75000 0.2154 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0566 0.5
0.2199 1.3828 80000 0.2153 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.215 1.4692 85000 0.2188 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2091 1.5557 90000 0.2169 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2136 1.6421 95000 0.2189 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0557 0.5
0.2127 1.7285 100000 0.2210 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2191 1.8149 105000 0.2157 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0561 0.5
0.2189 1.9014 110000 0.2157 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2189 1.9878 115000 0.2155 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2123 2.0742 120000 0.2162 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0555 0.5
0.2114 2.1606 125000 0.2158 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0564 0.5
0.2166 2.2471 130000 0.2153 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2209 2.3335 135000 0.2154 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2047 2.4199 140000 0.2169 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0559 0.5
0.2173 2.5063 145000 0.2162 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2235 2.5928 150000 0.2154 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2069 2.6792 155000 0.2163 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2166 2.7656 160000 0.2158 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2165 2.8520 165000 0.2157 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5
0.2113 2.9385 170000 0.2160 0.0 0.0 0.0 0.9171 0.0 0.9015 0.0558 0.5

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
16
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lcaffreymaffei/bert_classifier_sped_transactions

Finetuned
(2078)
this model