lauraparra28's picture
Update README.md
7ed1bde
metadata
license: apache-2.0
base_model: albert-base-v2
tags:
  - generated_from_trainer
datasets:
  - squad
model-index:
  - name: albert-base-v2-finetuned-squad
    results:
      - task:
          name: Question Answering
          type: question-answering
        dataset:
          type: squad_v2
          name: The Stanford Question Answering Dataset
          args: en
        metrics:
          - type: eval_exact
            value: 76.263
          - type: eval_f1
            value: 84.734
language:
  - en
metrics:
  - exact_match
  - f1

albert-base-v2-finetuned-squad

This model is a fine-tuned version of albert-base-v2 on the squad dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4539
  • Exact Match: 80.60548722800378
  • F1 score: 88.76870326468953

Model description

This model is fine-tuned on the extractive question answering task -- The Stanford Question Answering Dataset -- SQuAD2.0.

Intended uses & limitations

More information needed

Training and evaluation data

Training and evaluation was done on SQuAD2.0.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss
0.8702 1.0 5540 0.8943
0.6972 2.0 11080 0.9087
0.4998 3.0 16620 0.9890
0.3601 4.0 22160 1.1892
0.235 5.0 27700 1.4539

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.12.1
  • Datasets 2.14.5
  • Tokenizers 0.14.1