xlnet-base / README.md
lamia6001's picture
Training in progress epoch 2
089ab24
metadata
license: mit
base_model: xlnet/xlnet-base-cased
tags:
  - generated_from_keras_callback
model-index:
  - name: lamia6001/xlnet-base
    results: []

lamia6001/xlnet-base

This model is a fine-tuned version of xlnet/xlnet-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1395
  • Train Accuracy: 0.936
  • Validation Loss: 0.1985
  • Validation Accuracy: 0.9360
  • Train Precision: 0.9386
  • Train Recall: 0.936
  • Train F1: 0.9353
  • Epoch: 2

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Train Precision Train Recall Train F1 Epoch
0.6647 0.9205 0.2528 0.9205 0.9226 0.9205 0.9200 0
0.1997 0.931 0.1945 0.9310 0.9330 0.931 0.9305 1
0.1395 0.936 0.1985 0.9360 0.9386 0.936 0.9353 2

Framework versions

  • Transformers 4.38.2
  • TensorFlow 2.15.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2