metadata
license: apache-2.0
base_model: studio-ousia/luke-base
tags:
- generated_from_trainer
model-index:
- name: legal-luke-base-ner
results: []
legal-luke-base-ner
This model is a fine-tuned version of studio-ousia/luke-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0153
- F1-type-match: 0.9297
- F1-partial: 0.9197
- F1-strict: 0.8794
- F1-exact: 0.8891
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | F1-type-match | F1-partial | F1-strict | F1-exact |
---|---|---|---|---|---|---|---|
0.021 | 1.0 | 1375 | 0.0219 | 0.8297 | 0.8176 | 0.7238 | 0.7525 |
0.0132 | 2.0 | 2750 | 0.0156 | 0.8841 | 0.8722 | 0.7943 | 0.8166 |
0.0087 | 3.0 | 4125 | 0.0155 | 0.8901 | 0.8796 | 0.8271 | 0.8374 |
0.0052 | 4.0 | 5500 | 0.0153 | 0.9190 | 0.9100 | 0.8633 | 0.8750 |
0.0035 | 5.0 | 6875 | 0.0153 | 0.9297 | 0.9197 | 0.8794 | 0.8891 |
Framework versions
- Transformers 4.36.0
- Pytorch 2.0.0
- Datasets 2.17.1
- Tokenizers 0.15.0