|
--- |
|
language: |
|
- en |
|
- fr |
|
- de |
|
- es |
|
- it |
|
- pt |
|
- ru |
|
- zh |
|
- ja |
|
license: apache-2.0 |
|
--- |
|
|
|
# Mistral-Nemo-Instruct-2407-abliterated |
|
|
|
## Introduction |
|
|
|
Abliterated version of [Mistral-Nemo-Instruct-2407](https://huggingface.co./mistralai/Mistral-Nemo-Instruct-2407), a Large Language Model (LLM) trained jointly by Mistral AI and NVIDIA that significantly outperforms existing models smaller or similar in size. |
|
The model's strongest refusal directions have been ablated via weight orthogonalization, but the model may still refuse your request, misunderstand your intent, or provide unsolicited advice regarding ethics or safety. |
|
|
|
## Key features |
|
- Trained with a **128k context window** |
|
- Trained on a large proportion of **multilingual and code data** |
|
- Drop-in replacement of Mistral 7B |
|
|
|
## Quickstart |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
model_id = "natong19/Mistral-Nemo-Instruct-2407-abliterated" |
|
device = "cuda" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
conversation = [{"role": "user", "content": "Where's the capital of France?"}] |
|
|
|
tool_use_prompt = tokenizer.apply_chat_template( |
|
conversation, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
) |
|
|
|
inputs = tokenizer(tool_use_prompt, return_tensors="pt", return_token_type_ids=False).to(device) |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto") |
|
|
|
outputs = model.generate(**inputs, max_new_tokens=128) |
|
print(tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):], skip_special_tokens=True)) |
|
``` |
|
|
|
## Evaluation |
|
|
|
Evaluation framework: lm-evaluation-harness 0.4.2 |
|
|
|
| Benchmark | Mistral-Nemo-Instruct-2407 | Mistral-Nemo-Instruct-2407-abliterated | |
|
| :--- | :---: | :---: | |
|
| ARC (25-shot) | 65.9 | 65.8 | |
|
| GSM8K (5-shot) | 76.2 | 75.2 | |
|
| HellaSwag (10-shot) | 84.3 | 84.3 | |
|
| MMLU (5-shot) | 68.4 | 68.8 | |
|
| TruthfulQA (0-shot) | 54.9 | 55.0 | |
|
| Winogrande (5-shot) | 82.2 | 82.6 | |