|
--- |
|
language: |
|
- ko |
|
datasets: |
|
- kyujinpy/KOpen-platypus |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
license: cc-by-nc-sa-4.0 |
|
--- |
|
|
|
# **Kosy🍵llama** |
|
![img](./Koisy_llama.JPG) |
|
|
|
## Model Details |
|
|
|
**Model Developers** Kyujin Han (kyujinpy) |
|
|
|
**Model Description** |
|
[NEFTune](https://github.com/neelsjain/NEFTune) method를 활용하여 훈련한 Ko-platypus2 new version! |
|
(Noisy + KO + llama = Kosy🍵llama) |
|
|
|
**Repo Link** |
|
Github **KoNEFTune**(not public; wait!): [Kosy🍵llama](https://github.com/Marker-Inc-Korea/KoNEFTune) |
|
If you visit our github, you can easily apply **Random_noisy_embedding_fine-tuning**!! |
|
|
|
**Base Model** |
|
[hyunseoki/ko-en-llama2-13b](https://huggingface.co./hyunseoki/ko-en-llama2-13b) |
|
|
|
**Training Dataset** |
|
Version of combined dataset: [kyujinpy/KOpen-platypus](https://huggingface.co./datasets/kyujinpy/KOpen-platypus) |
|
I use A100 GPU 40GB and COLAB, when trianing. |
|
|
|
# **Model comparisons** |
|
[KO-LLM leaderboard](https://huggingface.co./spaces/upstage/open-ko-llm-leaderboard) |
|
# **NEFT comparisons** |
|
![img](./comparison.png) |
|
| Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | |
|
| --- | --- | --- | --- | --- | --- | --- | |
|
| [Ko-Platypus2-13B](https://huggingface.co./kyujinpy/KO-Platypus2-13B) | 45.60 | 44.20 | 54.31 | 42.47 | 44.41 | 42.62 | |
|
| *NEFT(🍵kosy)+MLP-v1 | 43.64 | 43.94 | 53.88 | 42.68 | 43.46 | 34.24 | |
|
| *NEFT(🍵kosy)+MLP-v2 | 45.45 | 44.20 | 54.56 | 42.60 | 42.68 | 42.98 | |
|
| ***NEFT(🍵kosy)+MLP-v3** | 46.31 | 43.34 | 54.54 | 43.38 | 44.11 | 46.16 | |
|
| NEFT(🍵kosy)+Attention | 44.92 |42.92 | 54.48 | 42.99 | 43.00 | 41.20 | |
|
| NEFT(🍵kosy) | 45.08 | 43.09 | 53.61 | 41.06 | 43.47 | 43.21 | |
|
> *Different Hyperparameters such that learning_rate, batch_size, epoch, etc... |
|
|
|
# Implementation Code |
|
```python |
|
### KO-Platypus |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
repo = "kyujinpy/Koisy-Platypus2-13B" |
|
OpenOrca = AutoModelForCausalLM.from_pretrained( |
|
repo, |
|
return_dict=True, |
|
torch_dtype=torch.float16, |
|
device_map='auto' |
|
) |
|
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) |
|
``` |
|
|
|
--- |