kyujinpy's picture
Upload README.md
2a20363
|
raw
history blame
2.18 kB
---
language:
- ko
datasets:
- kyujinpy/KOpen-platypus
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
---
# **Kosy🍵llama**
![img](./Koisy_llama.JPG)
## Model Details
**Model Developers** Kyujin Han (kyujinpy)
**Model Description**
[NEFTune](https://github.com/neelsjain/NEFTune) method를 활용하여 훈련한 Ko-platypus2 new version!
(Noisy + KO + llama = Kosy🍵llama)
**Repo Link**
Github **KoNEFTune**(not public; wait!): [Kosy🍵llama](https://github.com/Marker-Inc-Korea/KoNEFTune)
If you visit our github, you can easily apply **Random_noisy_embedding_fine-tuning**!!
**Base Model**
[hyunseoki/ko-en-llama2-13b](https://huggingface.co./hyunseoki/ko-en-llama2-13b)
**Training Dataset**
Version of combined dataset: [kyujinpy/KOpen-platypus](https://huggingface.co./datasets/kyujinpy/KOpen-platypus)
I use A100 GPU 40GB and COLAB, when trianing.
# **Model comparisons**
[KO-LLM leaderboard](https://huggingface.co./spaces/upstage/open-ko-llm-leaderboard)
# **NEFT comparisons**
![img](./comparison.png)
| Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| --- | --- | --- | --- | --- | --- | --- |
| [Ko-Platypus2-13B](https://huggingface.co./kyujinpy/KO-Platypus2-13B) | 45.60 | 44.20 | 54.31 | 42.47 | 44.41 | 42.62 |
| *NEFT(🍵kosy)+MLP-v1 | 43.64 | 43.94 | 53.88 | 42.68 | 43.46 | 34.24 |
| *NEFT(🍵kosy)+MLP-v2 | 45.45 | 44.20 | 54.56 | 42.60 | 42.68 | 42.98 |
| ***NEFT(🍵kosy)+MLP-v3** | 46.31 | 43.34 | 54.54 | 43.38 | 44.11 | 46.16 |
| NEFT(🍵kosy)+Attention | 44.92 |42.92 | 54.48 | 42.99 | 43.00 | 41.20 |
| NEFT(🍵kosy) | 45.08 | 43.09 | 53.61 | 41.06 | 43.47 | 43.21 |
> *Different Hyperparameters such that learning_rate, batch_size, epoch, etc...
# Implementation Code
```python
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "kyujinpy/Koisy-Platypus2-13B"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
```
---