kwwww's picture
update model card README.md
a4d8175
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - bionlp2004
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-base-uncased_1_16619_token
    results: []

bert-base-uncased_1_16619_token

This model is a fine-tuned version of bert-base-uncased on the bionlp2004 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1660
  • Precision: 0.7730
  • Recall: 0.8185
  • F1: 0.7951
  • Accuracy: 0.9478

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.233 1.0 1039 0.1956 0.6860 0.7301 0.7073 0.9331
0.2099 2.0 2078 0.1890 0.7214 0.7508 0.7358 0.9370
0.1991 3.0 3117 0.1862 0.7058 0.7785 0.7404 0.9375
0.19 4.0 4156 0.1736 0.7420 0.7943 0.7673 0.9434
0.1894 5.0 5195 0.1748 0.7319 0.7722 0.7515 0.9417
0.1814 6.0 6234 0.1686 0.7351 0.7952 0.7640 0.9427
0.177 7.0 7273 0.1682 0.7404 0.8086 0.7730 0.9448
0.1756 8.0 8312 0.1740 0.7386 0.7796 0.7585 0.9423
0.1761 9.0 9351 0.1691 0.7442 0.7664 0.7551 0.9430
0.1693 10.0 10390 0.1641 0.7506 0.8113 0.7797 0.9446
0.1697 11.0 11429 0.1669 0.7297 0.7938 0.7604 0.9427
0.1607 12.0 12468 0.1654 0.7593 0.8185 0.7878 0.9454
0.1643 13.0 13507 0.1652 0.7288 0.8035 0.7644 0.9430
0.1618 14.0 14546 0.1592 0.7548 0.7988 0.7762 0.9464
0.1598 15.0 15585 0.1641 0.7575 0.8006 0.7785 0.9454
0.16 16.0 16624 0.1621 0.7440 0.8174 0.7790 0.9456
0.1572 17.0 17663 0.1669 0.7598 0.8015 0.7801 0.9453
0.1528 18.0 18702 0.1680 0.7332 0.8073 0.7685 0.9427
0.1513 19.0 19741 0.1653 0.7630 0.7920 0.7772 0.9453
0.1504 20.0 20780 0.1635 0.7645 0.8073 0.7853 0.9461
0.1491 21.0 21819 0.1591 0.7547 0.8262 0.7889 0.9473
0.1455 22.0 22858 0.1627 0.7634 0.8145 0.7881 0.9457
0.145 23.0 23897 0.1584 0.7529 0.8210 0.7855 0.9464
0.1438 24.0 24936 0.1603 0.7592 0.8012 0.7796 0.9466
0.1413 25.0 25975 0.1614 0.7699 0.8134 0.7911 0.9470
0.1437 26.0 27014 0.1594 0.7557 0.8226 0.7877 0.9465
0.1414 27.0 28053 0.1605 0.7680 0.8183 0.7923 0.9478
0.1385 28.0 29092 0.1631 0.7588 0.8028 0.7802 0.9459
0.1365 29.0 30131 0.1568 0.7701 0.8167 0.7927 0.9482
0.1352 30.0 31170 0.1607 0.7660 0.8271 0.7954 0.9481
0.1331 31.0 32209 0.1646 0.7627 0.8122 0.7867 0.9461
0.1328 32.0 33248 0.1658 0.7560 0.8176 0.7856 0.9464
0.1319 33.0 34287 0.1579 0.7639 0.8228 0.7923 0.9486
0.1309 34.0 35326 0.1595 0.7666 0.8151 0.7901 0.9471
0.1271 35.0 36365 0.1616 0.7645 0.8248 0.7935 0.9476
0.1262 36.0 37404 0.1615 0.7641 0.8104 0.7866 0.9464
0.1227 37.0 38443 0.1614 0.7667 0.8273 0.7958 0.9475
0.1207 38.0 39482 0.1640 0.7763 0.8014 0.7887 0.9472
0.1212 39.0 40521 0.1613 0.7716 0.8142 0.7923 0.9487
0.1192 40.0 41560 0.1596 0.7773 0.8196 0.7979 0.9493
0.1193 41.0 42599 0.1684 0.7769 0.8071 0.7917 0.9473
0.1171 42.0 43638 0.1636 0.7717 0.8183 0.7943 0.9471
0.1146 43.0 44677 0.1613 0.7675 0.8217 0.7937 0.9476
0.1154 44.0 45716 0.1648 0.7725 0.8066 0.7892 0.9467
0.1149 45.0 46755 0.1660 0.7745 0.8172 0.7953 0.9476
0.1133 46.0 47794 0.1655 0.7742 0.8187 0.7958 0.9480
0.1121 47.0 48833 0.1659 0.7768 0.8156 0.7957 0.9481
0.1104 48.0 49872 0.1663 0.7714 0.8129 0.7916 0.9478
0.1069 49.0 50911 0.1659 0.7746 0.8163 0.7949 0.9479
0.11 50.0 51950 0.1660 0.7730 0.8185 0.7951 0.9478

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3