metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
- weighted precision
- weighted recall
- weighted f1
- macro precision
- macro recall
- macro f1
widget:
- text: Roles can be assigned to a user account for individual products.
- text: >-
The number of active Subscription Versions in a sample to be monitored by
the NPAC SMS.
- text: 'The visual representation of an SDT or a part of an SDT. '
- text: >-
Open Society Institute Guide to Institutional Repository Software, 3rd ed.
(2004)
- text: >-
The Application/Delete menu item shall provide an interface for deleting
an application and all the files in the application directory.
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/all-roberta-large-v1
model-index:
- name: SetFit with sentence-transformers/all-roberta-large-v1
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7621000820344545
name: Accuracy
- type: weighted precision
value: 0.7627752679232598
name: Weighted Precision
- type: weighted recall
value: 0.7621000820344545
name: Weighted Recall
- type: weighted f1
value: 0.7621663772102192
name: Weighted F1
- type: macro precision
value: 0.7621734718049769
name: Macro Precision
- type: macro recall
value: 0.7624659767698817
name: Macro Recall
- type: macro f1
value: 0.7620481988534211
name: Macro F1
SetFit with sentence-transformers/all-roberta-large-v1
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-roberta-large-v1 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-roberta-large-v1
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 256 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
1 |
|
0 |
|
Evaluation
Metrics
Label | Accuracy | Weighted Precision | Weighted Recall | Weighted F1 | Macro Precision | Macro Recall | Macro F1 |
---|---|---|---|---|---|---|---|
all | 0.7621 | 0.7628 | 0.7621 | 0.7622 | 0.7622 | 0.7625 | 0.7620 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("kwang123/roberta-large-setfit-ReqORNot")
# Run inference
preds = model("The visual representation of an SDT or a part of an SDT. ")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 5 | 21.7708 | 46 |
Label | Training Sample Count |
---|---|
0 | 24 |
1 | 24 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0067 | 1 | 0.3795 | - |
0.3333 | 50 | 0.298 | - |
0.6667 | 100 | 0.0025 | - |
1.0 | 150 | 0.0002 | - |
1.3333 | 200 | 0.0002 | - |
1.6667 | 250 | 0.0001 | - |
2.0 | 300 | 0.0001 | - |
2.3333 | 350 | 0.0001 | - |
2.6667 | 400 | 0.0001 | - |
3.0 | 450 | 0.0001 | - |
3.3333 | 500 | 0.0 | - |
3.6667 | 550 | 0.0 | - |
4.0 | 600 | 0.0 | - |
4.3333 | 650 | 0.0001 | - |
4.6667 | 700 | 0.0 | - |
5.0 | 750 | 0.0 | - |
5.3333 | 800 | 0.0 | - |
5.6667 | 850 | 0.0 | - |
6.0 | 900 | 0.0 | - |
6.3333 | 950 | 0.0001 | - |
6.6667 | 1000 | 0.0 | - |
7.0 | 1050 | 0.0 | - |
7.3333 | 1100 | 0.0 | - |
7.6667 | 1150 | 0.0 | - |
8.0 | 1200 | 0.0 | - |
8.3333 | 1250 | 0.0 | - |
8.6667 | 1300 | 0.0 | - |
9.0 | 1350 | 0.0 | - |
9.3333 | 1400 | 0.0 | - |
9.6667 | 1450 | 0.0 | - |
10.0 | 1500 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.5.1
- Transformers: 4.38.1
- PyTorch: 2.1.0+cu121
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}