Edit model card

llama2-7B-ReqORNot

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2597
  • Accuracy: 0.8970
  • Weighted precision: 0.8971
  • Weighted recall: 0.8970
  • Weighted f1: 0.8971
  • Macro precision: 0.8969
  • Macro recall: 0.8971
  • Macro f1: 0.8970

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Weighted precision Weighted recall Weighted f1 Macro precision Macro recall Macro f1
No log 1.0 237 0.4807 0.7896 0.7895 0.7896 0.7895 0.7894 0.7891 0.7892
No log 2.0 474 0.3167 0.8605 0.8605 0.8605 0.8605 0.8604 0.8604 0.8604
0.5108 3.0 711 0.2709 0.8860 0.8869 0.8860 0.8860 0.8862 0.8866 0.8860
0.5108 4.0 948 0.2704 0.8880 0.8889 0.8880 0.8879 0.8894 0.8871 0.8876
0.1829 5.0 1185 0.2597 0.8970 0.8971 0.8970 0.8971 0.8969 0.8971 0.8970

Framework versions

  • PEFT 0.9.0
  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for kwang123/llama2-7B-ReqORNot

Adapter
(1080)
this model