metadata
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:8408
- loss:CosineSimilarityLoss
widget:
- source_sentence: president
sentences:
- assistante de banque priv e banco santander rio
- >-
worldwide executive vice president corindus a siemens healthineers
company
- soporte t cnico superior
- source_sentence: chief business strategy officer
sentences:
- sub jefe
- analista senior recursos humanos sales staff and logistics
- subgerente sostenibilidad y hseq
- source_sentence: gerente de planificaci贸n
sentences:
- analista de soporte web
- director
- gestion calidad
- source_sentence: global human resources leader
sentences:
- director manufacturing engineering
- quality specialist
- asesoramiento para comprar inmuebles en uruguay paraguay espa a y usa
- source_sentence: commercial manager
sentences:
- jefe de turno planta envasado de vinos
- gerente de operaciones
- vice president of finance americas
SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 馃 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'commercial manager',
'gerente de operaciones',
'vice president of finance americas',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 8,408 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 6.2 tokens
- max: 12 tokens
- min: 3 tokens
- mean: 7.75 tokens
- max: 21 tokens
- min: 0.0
- mean: 0.06
- max: 1.0
- Samples:
sentence_0 sentence_1 label strategic planning manager
senior brand manager uap southern cone & personal care cdm chile
0.0
director de planificacion
key account manager tiendas paris
0.0
gerente general
analista de cobranza
0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 50multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 50max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.9506 | 500 | 0.0434 |
1.9011 | 1000 | 0.0135 |
2.8517 | 1500 | 0.0072 |
3.8023 | 2000 | 0.0056 |
4.7529 | 2500 | 0.0044 |
5.7034 | 3000 | 0.0038 |
6.6540 | 3500 | 0.0034 |
7.6046 | 4000 | 0.0032 |
8.5551 | 4500 | 0.0029 |
9.5057 | 5000 | 0.0028 |
10.4563 | 5500 | 0.0026 |
11.4068 | 6000 | 0.0025 |
12.3574 | 6500 | 0.0026 |
13.3080 | 7000 | 0.0023 |
14.2586 | 7500 | 0.0023 |
15.2091 | 8000 | 0.0023 |
16.1597 | 8500 | 0.0022 |
17.1103 | 9000 | 0.0021 |
18.0608 | 9500 | 0.0019 |
19.0114 | 10000 | 0.0021 |
19.9620 | 10500 | 0.0019 |
20.9125 | 11000 | 0.0019 |
21.8631 | 11500 | 0.0016 |
22.8137 | 12000 | 0.0018 |
23.7643 | 12500 | 0.0018 |
24.7148 | 13000 | 0.0018 |
25.6654 | 13500 | 0.0016 |
26.6160 | 14000 | 0.0017 |
27.5665 | 14500 | 0.0016 |
28.5171 | 15000 | 0.0016 |
29.4677 | 15500 | 0.0016 |
30.4183 | 16000 | 0.0016 |
31.3688 | 16500 | 0.0019 |
32.3194 | 17000 | 0.0018 |
33.2700 | 17500 | 0.0017 |
34.2205 | 18000 | 0.0016 |
35.1711 | 18500 | 0.0016 |
36.1217 | 19000 | 0.0016 |
37.0722 | 19500 | 0.0015 |
38.0228 | 20000 | 0.0012 |
38.9734 | 20500 | 0.0015 |
39.9240 | 21000 | 0.0015 |
40.8745 | 21500 | 0.0013 |
41.8251 | 22000 | 0.0014 |
42.7757 | 22500 | 0.0014 |
43.7262 | 23000 | 0.0014 |
44.6768 | 23500 | 0.0013 |
45.6274 | 24000 | 0.0012 |
46.5779 | 24500 | 0.0014 |
47.5285 | 25000 | 0.0012 |
48.4791 | 25500 | 0.0013 |
49.4297 | 26000 | 0.0013 |
Framework Versions
- Python: 3.8.5
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}