bert-base-uncased-issues-128
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2379
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 16
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.101 | 1.0 | 291 | 1.7121 |
1.6363 | 2.0 | 582 | 1.5069 |
1.4979 | 3.0 | 873 | 1.3612 |
1.3964 | 4.0 | 1164 | 1.3421 |
1.3323 | 5.0 | 1455 | 1.2287 |
1.288 | 6.0 | 1746 | 1.3609 |
1.2321 | 7.0 | 2037 | 1.3087 |
1.2018 | 8.0 | 2328 | 1.3420 |
1.167 | 9.0 | 2619 | 1.2250 |
1.1402 | 10.0 | 2910 | 1.1748 |
1.126 | 11.0 | 3201 | 1.1265 |
1.1109 | 12.0 | 3492 | 1.1797 |
1.0865 | 13.0 | 3783 | 1.2223 |
1.0747 | 14.0 | 4074 | 1.2107 |
1.0707 | 15.0 | 4365 | 1.2308 |
1.061 | 16.0 | 4656 | 1.2379 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for kswada/bert-base-uncased-issues-128
Base model
google-bert/bert-base-uncased