YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co./docs/hub/model-cards#model-card-metadata)

Model Card for krishnagarg09/stance-detection-semeval2016

Model Description

The goal is to identify the stance (AGAINST, NONE, FAVOR) of a user towards a given target.

Sample:

Input: Lord, You are my Hope! In You I will always trust.
Target: Atheism
Stance: AGAINST

The model is pretrained on SemEval2016-Task6 stance detection dataset. The dataset is available at https://huggingface.co./datasets/krishnagarg09/SemEval2016Task6.

Ref: https://aclanthology.org/S16-1003/ for more details about the dataset

  • Developed by: Krishna Garg
  • Shared by [Optional]: Krishna Garg
  • Model type: Language model
  • Language(s) (NLP): en
  • License: mit
  • Resources for more information:

Direct Use

from transformers import AutoTokenizer, AutoModelForSequenceClassification
from datasets import load_dataset

# load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("krishnagarg09/stance-detection-semeval2016")
model = AutoModelForSequenceClassification.from_pretrained("krishnagarg09/stance-detection-semeval2016")

# load dataset
dataset = load_dataset("krishnagarg09/SemEval2016Task6")

# prepare input
text = dataset['test']['Tweet']
encoded_input = tokenizer(text, return_tensors='pt', add_special_tokens = True, max_length=128, padding=True, truncation=True)

# forward pass
output = model(**encoded_input)

Dataset

The dataset is available at https://huggingface.co./datasets/krishnagarg09/SemEval2016Task6.

dataset = load_dataset("krishnagarg09/SemEval2016Task6")

Training Details

optimizer: Adam
lr: 2e-5
loss: crossentropy
epochs: 5 (best weights chosen over validation)
batch_size: 32

Preprocessing

Text lowercased, #semst tags removed, p.OPT.URL,p.OPT.EMOJI,p.OPT.RESERVED removed using tweet-preprocessor package, normalization done using emnlp_dict.txt and noslang_data.json

Evaluation

Evaluation for Stance Detection is done only for 2/3 labels, i.e., FAVOR and AGAINST.

Precision: 62.69
Recall: 69.43
F1: 65.56

Hardware

Nvidia RTX A5000 24GB

Model Card Contact

[email protected]

Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.