bert-large-categorization-uncased-finetuned

This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9071
  • Accuracy: 0.3889

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 87 3.2289 0.2222
No log 2.0 174 3.0978 0.2778
No log 3.0 261 2.7951 0.3333
No log 4.0 348 3.0421 0.3333
No log 5.0 435 2.9499 0.3333
1.5731 6.0 522 2.9071 0.3889
1.5731 7.0 609 2.8835 0.3333
1.5731 8.0 696 2.8715 0.3889
1.5731 9.0 783 2.9067 0.3889
1.5731 10.0 870 2.9629 0.3889
1.5731 11.0 957 2.8977 0.3889
0.8355 12.0 1044 3.0798 0.3333
0.8355 13.0 1131 2.9957 0.3889
0.8355 14.0 1218 2.9596 0.3889
0.8355 15.0 1305 2.9296 0.3889

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
6
Safetensors
Model size
335M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for kranasian/bert-large-categorization-uncased-finetuned

Finetuned
(120)
this model