metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:76
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: ply C Tris pH8.0 Dextran Trehalose dNTPS Na2 SO4 Triton X-100
sentences:
- NE
- Assignee
- ID NO
- source_sentence: >-
Certain isothermal amplification methods are able to amplify a
target nucleic acid from trace levels to very high 25 and detectable
levels within a matter of minutes. Such isothermal methods, e.g.,
Nicking and Extension Amplifi cation Reaction (NEAR), allow users to
detect a particular nucleotide sequence in trace amounts,
facilitating point-of care testing and increasing the accessibility
and speed of diagnostics. Streptococcus pyogenes is the causative agent
of group A streptococcal (GAS) infections such as pharyngitis, impe
tigo, and life-threatening necrotizing fasciitis and sepsis. The
most common GAS infection, pharyngitis, can be diagnosed by
collecting a throat swab sample from a patient and culturing the sample
under conditions that would enable bacterial, specifically S. pyogenes,
growth, which takes 2-3 days. Culturing S. pyogenes is an accurate
and reliable method of diagnosing GAS, but it is slow. A 2-3 day
delay in prescribing appropriate antibiotic treatment can result in
unnecessary patient suffering and potentially the onset oflife threatening
conditions such as rheumatic fever. In the recent past, biochemical
methods have been developed to detect S. pyogenes, but these methods
do not provide the necessary characteristics to be deployed in
the point-of-care setting, either due to a lack of sensitivity or
time to result (speed). Accordingly, a highly sensitive and rapid
qualitative assay for the detection and diagnosis of a S. pyogenes
infection is desired.
sentences:
- ABSTRACT
- TACTGTTCCTGTTTGA
- BACKGROUND
- source_sentence: W02010/141940 12/2010 CA (US)
sentences:
- WO
- DESCRIPTION OF DRAWINGS
- SUMMARY
- source_sentence: 9 6 nucleotide sequence at least 80, 85 or 95% identity to SEQ
sentences:
- '2'
- NEAR
- Ph. Dissertation published Jan. 1, 2008. (Year
- source_sentence: >-
One potential inhibitor of the NEAR technology is human gDNA. When a
throat swab sample is collected from a patient symptomatic for
GAS infection, it is possible that human gDNA is also collected on
the swab (from immune cells such as white blood cells or from local
epithelial cells). In order to assess the impact that human gDNA has on
the GAS assay, a study was performed using three different levels
of GAS gDNA (25, 250 and 1000 copies) in the presence of 0, 10,
50, 100, 250, 500 or 1000 ng of human gDNA. As shown in FIG. 6,
the presence of human gDNA does have an impact on GAS assay
performance, and the impact is GAS target concentration dependent.
When there is a low copy number of target GAS present in the reaction,
10 ng of human gDNA or more significantly inhibits the assay. At
250 copies of GAS target, the impact of 10 ng of 60 human gDNA is
less, and at 1,000 copies of GAS target, the effect of 10 ng of human gDNA
on the assay is significantly less. In fact, when 1,000 copies of
target is present in the assay, up to 100 ng of human gDNA can be
tolerated, albeit with a slower amplification speed and reduced
fluorescence signal. Testing of the 501 (IC only) mix showed a
more robust response to human gDNA. When the 501 mix was tested
in the presence of O copies of target GAS and up to US 10,329,601 B2
23 1,000 ng of human gDNA, the assay still produced a clearly positive
signal at 500 ng of human gDNA (even at 1,000 ng of human gDNA the
fluorescence signal was still above background). Other Embodiments It
is to be understood that while the invention has been described
in conjunction with the detailed description 24 thereof, the
foregoing description is intended to illustrate and not limit the
scope of the invention, which is defined by the scope of the appended
claims. Other aspects, advantages, and modifications are within the
scope of the following claims.
sentences:
- '75'
- TGTAGCTGACACCACCAAGCTACA
- Impact of Human Genomic DNA (gDNA) on GAS Assay
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.625
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.875
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.625
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.29166666666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.625
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.875
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8202007889556063
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7604166666666666
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7604166666666666
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.625
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.875
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.875
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.625
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.29166666666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17500000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.625
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.875
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.875
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.810892117584935
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.75
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.75
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.625
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.875
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.875
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.625
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.29166666666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17500000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.625
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.875
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.875
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8057993287946483
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7447916666666666
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7447916666666666
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.75
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.875
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.75
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.29166666666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.75
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.875
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8608566009043177
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8166666666666667
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8166666666666667
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.75
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.875
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.75
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.29166666666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.75
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.875
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8608566009043177
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8166666666666667
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8166666666666667
name: Cosine Map@100
SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("kr-manish/fine-tuned-bge-base-raw_pdf-v1")
sentences = [
'One potential inhibitor of the NEAR technology is human gDNA. When a throat swab sample is collected from a patient symptomatic for GAS infection, it is possible that human gDNA is also collected on the swab (from immune cells such as white blood cells or from local epithelial cells). In order to assess the impact that human gDNA has on the GAS assay, a study was performed using three different levels of GAS gDNA (25, 250 and 1000 copies) in the presence of 0, 10, 50, 100, 250, 500 or 1000 ng of human gDNA. As shown in FIG. 6, the presence of human gDNA does have an impact on GAS assay performance, and the impact is GAS target concentration dependent. When there is a low copy number of target GAS present in the reaction, 10 ng of human gDNA or more significantly inhibits the assay. At 250 copies of GAS target, the impact of 10 ng of 60 human gDNA is less, and at 1,000 copies of GAS target, the effect of 10 ng of human gDNA on the assay is significantly less. In fact, when 1,000 copies of target is present in the assay, up to 100 ng of human gDNA can be tolerated, albeit with a slower amplification speed and reduced fluorescence signal. Testing of the 501 (IC only) mix showed a more robust response to human gDNA. When the 501 mix was tested in the presence of O copies of target GAS and up to US 10,329,601 B2 23 1,000 ng of human gDNA, the assay still produced a clearly positive signal at 500 ng of human gDNA (even at 1,000 ng of human gDNA the fluorescence signal was still above background). Other Embodiments It is to be understood that while the invention has been described in conjunction with the detailed description 24 thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.',
'Impact of Human Genomic DNA (gDNA) on GAS Assay',
'TGTAGCTGACACCACCAAGCTACA',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.625 |
cosine_accuracy@3 |
0.875 |
cosine_accuracy@5 |
1.0 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.625 |
cosine_precision@3 |
0.2917 |
cosine_precision@5 |
0.2 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.625 |
cosine_recall@3 |
0.875 |
cosine_recall@5 |
1.0 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.8202 |
cosine_mrr@10 |
0.7604 |
cosine_map@100 |
0.7604 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.625 |
cosine_accuracy@3 |
0.875 |
cosine_accuracy@5 |
0.875 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.625 |
cosine_precision@3 |
0.2917 |
cosine_precision@5 |
0.175 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.625 |
cosine_recall@3 |
0.875 |
cosine_recall@5 |
0.875 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.8109 |
cosine_mrr@10 |
0.75 |
cosine_map@100 |
0.75 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.625 |
cosine_accuracy@3 |
0.875 |
cosine_accuracy@5 |
0.875 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.625 |
cosine_precision@3 |
0.2917 |
cosine_precision@5 |
0.175 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.625 |
cosine_recall@3 |
0.875 |
cosine_recall@5 |
0.875 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.8058 |
cosine_mrr@10 |
0.7448 |
cosine_map@100 |
0.7448 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.75 |
cosine_accuracy@3 |
0.875 |
cosine_accuracy@5 |
1.0 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.75 |
cosine_precision@3 |
0.2917 |
cosine_precision@5 |
0.2 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.75 |
cosine_recall@3 |
0.875 |
cosine_recall@5 |
1.0 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.8609 |
cosine_mrr@10 |
0.8167 |
cosine_map@100 |
0.8167 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.75 |
cosine_accuracy@3 |
0.875 |
cosine_accuracy@5 |
1.0 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.75 |
cosine_precision@3 |
0.2917 |
cosine_precision@5 |
0.2 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.75 |
cosine_recall@3 |
0.875 |
cosine_recall@5 |
1.0 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.8609 |
cosine_mrr@10 |
0.8167 |
cosine_map@100 |
0.8167 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 76 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 8 tokens
- mean: 148.89 tokens
- max: 512 tokens
|
- min: 3 tokens
- mean: 6.54 tokens
- max: 18 tokens
|
- Samples:
positive |
anchor |
1 (AGACTCCATATGGAGTCTAGC CAAACAGGAACA); a reverse template comprising a nucleotide sequence having at least 80, 85 or 95% identity 55 (CGACTCCATATGGAGTC to GAAAGCAATCTGAGGA); and a probe oligonucleotide comprising a nucleotide sequence at least 80, 85 or 95% |
to SEQ ID NO |
One potential inhibitor of the NEAR technology is human gDNA. When a throat swab sample is collected from a patient symptomatic for GAS infection, it is possible that human gDNA is also collected on the swab (from immune cells such as white blood cells or from local epithelial cells). In order to assess the impact that human gDNA has on the GAS assay, a study was performed using three different levels of GAS gDNA (25, 250 and 1000 copies) in the presence of 0, 10, 50, 100, 250, 500 or 1000 ng of human gDNA. As shown in FIG. 6, the presence of human gDNA does have an impact on GAS assay performance, and the impact is GAS target concentration dependent. When there is a low copy number of target GAS present in the reaction, 10 ng of human gDNA or more significantly inhibits the assay. At 250 copies of GAS target, the impact of 10 ng of 60 human gDNA is less, and at 1,000 copies of GAS target, the effect of 10 ng of human gDNA on the assay is significantly less. In fact, when 1,000 copies of target is present in the assay, up to 100 ng of human gDNA can be tolerated, albeit with a slower amplification speed and reduced fluorescence signal. Testing of the 501 (IC only) mix showed a more robust response to human gDNA. When the 501 mix was tested in the presence of O copies of target GAS and up to US 10,329,601 B2 23 1,000 ng of human gDNA, the assay still produced a clearly positive signal at 500 ng of human gDNA (even at 1,000 ng of human gDNA the fluorescence signal was still above background). Other Embodiments It is to be understood that while the invention has been described in conjunction with the detailed description 24 thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims. |
Impact of Human Genomic DNA (gDNA) on GAS Assay |
25C-4x lyophilization mix, single tube assay format; 50C-2x lyophilization mix, single tube assay format; 25T-4x lyophilization mix, target assay only; 50T-2x lyophilization mix, target assay only; 25I- 4x lyophilization mix, IC assay only; 50I-2x lyophilization mix, internal control (IC) assay only. The GAS NEAR assay can be run on an appropriate platform. For example, the GAS NEAR assay can be run on an Al ere i platform (www.alere.com/ww/en/product-details/ alere-i-strep-a.html). AnA!ere i system consists of an instru ment which provides heating, mixing and fluorescence detection with automated result output, and a set of dispos ables, consisting of the sample receiver (where the elution buffer is stored), a test base ( containing two tubes of lyophilized NEAR reagents) and a transfer device ( designed to transfer 100 µI aliquots of eluted sample from the sample receiver to each of the two tubes containing lyophilized NEAR reagents located in the test base). Suitable dispos ables for use with the Alere i GAS NEAR test include those 60 described in, for example U.S. application Ser. No. 13/242, 999, incorporated herein by reference in its entirety. In addition to containing the reagents necessary for driv ing the GAS NEAR assay, the lyophilized material also contains the lytic agent for GAS, the protein plyC; therefore, 65 GAS lysis does not occur until the lyophilized material is re-suspended. In some cases, the lyophilized material does not contain a lytic agent for GAS, for example, in some US 10,329,601 B2 19 examples, the lyophilized material does not contain the protein plyC. The elution buffer was designed to allow for the rapid release of GAS organisms from clinical sample throat swabs as well as to provide the necessary salts for driving the NEAR assay (both MgSO4 and (NH4)2SO4), in 5 a slightly basic environment. In some examples, the elution buffer also includes an anti-microbial agent or preservative (e.g., ProClin® 950). For the present examples, GAS assay was performed as a two tube assay-a GAS target specific assay in one tube, and an internal control (IC) assay in a second tube (tested side by side on the Alere i). |
annotated as follows |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 3e-05
num_train_epochs
: 40
lr_scheduler_type
: cosine
warmup_ratio
: 0.2
fp16
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 3e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 40
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.2
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
batch_sampler
: batch_sampler
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0 |
0 |
- |
0.2103 |
0.1702 |
0.1888 |
0.1783 |
0.1815 |
1.0 |
1 |
- |
0.2102 |
0.1702 |
0.1888 |
0.1783 |
0.1815 |
2.0 |
2 |
- |
0.2104 |
0.1705 |
0.1890 |
0.1797 |
0.1815 |
3.0 |
3 |
- |
0.2841 |
0.1733 |
0.2524 |
0.1997 |
0.2465 |
4.0 |
5 |
- |
0.3285 |
0.2747 |
0.2865 |
0.3281 |
0.2901 |
5.0 |
6 |
- |
0.3311 |
0.3045 |
0.2996 |
0.3930 |
0.3001 |
6.0 |
7 |
- |
0.3948 |
0.3808 |
0.3193 |
0.4576 |
0.3147 |
7.0 |
9 |
- |
0.5308 |
0.4366 |
0.4222 |
0.5445 |
0.4367 |
8.0 |
10 |
3.233 |
0.5352 |
0.5240 |
0.5224 |
0.5867 |
0.4591 |
9.0 |
11 |
- |
0.5438 |
0.5864 |
0.5228 |
0.6519 |
0.6475 |
10.0 |
13 |
- |
0.6540 |
0.5906 |
0.6554 |
0.6684 |
0.6511 |
11.0 |
14 |
- |
0.6585 |
0.6020 |
0.6684 |
0.6857 |
0.6621 |
12.0 |
15 |
- |
0.6632 |
0.6661 |
0.6798 |
0.7063 |
0.6685 |
13.0 |
17 |
- |
0.7292 |
0.7210 |
0.6971 |
0.7396 |
0.7062 |
14.0 |
18 |
- |
0.7396 |
0.7375 |
0.7229 |
0.8333 |
0.7068 |
15.0 |
19 |
- |
0.75 |
0.7438 |
0.7021 |
0.8333 |
0.7083 |
16.0 |
20 |
1.4113 |
0.7604 |
0.7292 |
0.7042 |
0.8229 |
0.7104 |
17.0 |
21 |
- |
0.7542 |
0.7262 |
0.7095 |
0.8229 |
0.7158 |
18.0 |
22 |
- |
0.7438 |
0.7344 |
0.7054 |
0.8167 |
0.7188 |
19.0 |
23 |
- |
0.8063 |
0.7344 |
0.7125 |
0.8125 |
0.7021 |
20.0 |
25 |
- |
0.7958 |
0.7344 |
0.7262 |
0.8125 |
0.7333 |
21.0 |
26 |
- |
0.8021 |
0.7344 |
0.7470 |
0.8095 |
0.7333 |
22.0 |
27 |
- |
0.8021 |
0.7344 |
0.7470 |
0.8095 |
0.7333 |
23.0 |
29 |
- |
0.8021 |
0.7344 |
0.7470 |
0.8095 |
0.7438 |
24.0 |
30 |
0.6643 |
0.8021 |
0.7448 |
0.7470 |
0.8125 |
0.7438 |
25.0 |
31 |
- |
0.8125 |
0.7448 |
0.7470 |
0.8125 |
0.7604 |
26.0 |
33 |
- |
0.8125 |
0.7448 |
0.75 |
0.8167 |
0.7604 |
27.0 |
34 |
- |
0.8125 |
0.7448 |
0.75 |
0.8167 |
0.7604 |
28.0 |
35 |
- |
0.8125 |
0.7448 |
0.75 |
0.8167 |
0.7604 |
29.0 |
37 |
- |
0.8167 |
0.7448 |
0.75 |
0.8167 |
0.7604 |
30.0 |
38 |
- |
0.8167 |
0.7448 |
0.75 |
0.8167 |
0.7604 |
31.0 |
39 |
- |
0.8167 |
0.7448 |
0.75 |
0.8167 |
0.7604 |
32.0 |
40 |
0.4648 |
0.8167 |
0.7448 |
0.75 |
0.8167 |
0.7604 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}