metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:111
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Template la - Spy cepA s3062 F30 Sequence ( 5' /3') Oligo [ l
AGACTCCATATGGAGTCTAGCCAAACAG500 nM GAACA (SEQ ID NO, 1) In addition to
containing the reagents necessary for driv ing the GAS NEAR assay, the
lyophilized material also contains the lytic agent for GAS, the protein
plyC; therefore, 65 GAS lysis does not occur until the lyophilized
material is re-suspended. In some cases, the lyophilized material does not
contain a lytic agent for GAS, for example, in some
sentences:
- (45) Date of Patent
- http
- ID
- source_sentence: >-
:-"<-------t 40000 -1-----/-f-~~-----I 35000 -----+-IN---------- § 30000
----t+t---=~--- ~ 25000 ----~---++------t ~ 20000
-1----ff-r-ff.,.__----->t''n-\--------l
sentences:
- 45000 -------,-----=.....
- '-~'' ~-- -~<'
- comprises
- source_sentence: >-
55 1. A composition comprising i) a forward template comprising a nucleic
acid sequence comprising a recognition region at the 3' end that is
complementary to the 3' end of the Streptococcus pyogenes (S. pyogenes)
cell envelope proteinase A 60 (cepA) gene antisense strand; a nicking
enzyme bind ing site and a nicking site upstream of said recognition
region; and a stabilizing region upstream of said nick ing site, the
forward template comprising a nucleotide sequence having at least 80, 85,
or 95% identity to SEQ 65
sentences:
- ''' -- ,'' ,.,,,..,,,. _..,,,,.,,, .... ~-__ .... , , _,. ........-----.'
- What is claimed is
- annotated as follows
- source_sentence: 0 1 2 3 4 5 6 7 8 9 10 Time (minutes) FIG. 1 (Cont.)
sentences:
- ',-;.-'
- I I I I I I I I I
- (21) Appl. No.
- source_sentence: >-
~ " '"-'-en 25000 1 ,.,,µ,· ,, · .,-,.. •~h • 1 (1) ,\ II J } 7; . \
\(9,i, .,u, 4\:
sentences:
- 80, 85, or 95% identity to SEQ ID NO
- u
- en 25000 I ' 'lJVL' • -. • . .,.. ""~" '' ' I Q) l!J "667 7 ..._7 ... -,
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.07692307692307693
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.07692307692307693
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.23076923076923078
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.02564102564102564
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.015384615384615385
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.02307692307692308
name: Cosine Precision@10
- type: cosine_recall@1
value: 0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.07692307692307693
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.07692307692307693
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.23076923076923078
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.10157463646252407
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.06227106227106227
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.08137504276350917
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.07692307692307693
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.07692307692307693
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.23076923076923078
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.02564102564102564
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.015384615384615385
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.02307692307692308
name: Cosine Precision@10
- type: cosine_recall@1
value: 0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.07692307692307693
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.07692307692307693
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.23076923076923078
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.09595574046316672
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.05662393162393163
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.0744997471979569
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.07692307692307693
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.07692307692307693
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.23076923076923078
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.02564102564102564
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.015384615384615385
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.02307692307692308
name: Cosine Precision@10
- type: cosine_recall@1
value: 0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.07692307692307693
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.07692307692307693
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.23076923076923078
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.0981693666921052
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.05897435897435897
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.08277736107354086
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.07692307692307693
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.23076923076923078
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.23076923076923078
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.38461538461538464
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.07692307692307693
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.07692307692307693
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.04615384615384616
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.038461538461538464
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.07692307692307693
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.23076923076923078
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.23076923076923078
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.38461538461538464
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.21938110224036803
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1700854700854701
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.1860790779646314
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.07692307692307693
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.15384615384615385
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.3076923076923077
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.02564102564102564
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.03076923076923077
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03076923076923077
name: Cosine Precision@10
- type: cosine_recall@1
value: 0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.07692307692307693
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.15384615384615385
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.3076923076923077
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.1299580480538269
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.07628205128205127
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.10015432076692518
name: Cosine Map@100
SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("kr-manish/bge-base-raw_pdf_finetuned_vf1")
sentences = [
'~ " \'"-\'-en 25000 1 ,.,,µ,· ,, · .,-,.. •~h • 1 (1) ,\\ II J } 7; . \\ \\(9,i, .,u, 4\\:',
'en 25000 I \' \'lJVL\' • -. • . .,.. ""~" \'\' \' I Q) l!J "667 7 ..._7 ... -,',
'80, 85, or 95% identity to SEQ ID NO',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0 |
cosine_accuracy@3 |
0.0769 |
cosine_accuracy@5 |
0.0769 |
cosine_accuracy@10 |
0.2308 |
cosine_precision@1 |
0.0 |
cosine_precision@3 |
0.0256 |
cosine_precision@5 |
0.0154 |
cosine_precision@10 |
0.0231 |
cosine_recall@1 |
0.0 |
cosine_recall@3 |
0.0769 |
cosine_recall@5 |
0.0769 |
cosine_recall@10 |
0.2308 |
cosine_ndcg@10 |
0.1016 |
cosine_mrr@10 |
0.0623 |
cosine_map@100 |
0.0814 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0 |
cosine_accuracy@3 |
0.0769 |
cosine_accuracy@5 |
0.0769 |
cosine_accuracy@10 |
0.2308 |
cosine_precision@1 |
0.0 |
cosine_precision@3 |
0.0256 |
cosine_precision@5 |
0.0154 |
cosine_precision@10 |
0.0231 |
cosine_recall@1 |
0.0 |
cosine_recall@3 |
0.0769 |
cosine_recall@5 |
0.0769 |
cosine_recall@10 |
0.2308 |
cosine_ndcg@10 |
0.096 |
cosine_mrr@10 |
0.0566 |
cosine_map@100 |
0.0745 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0 |
cosine_accuracy@3 |
0.0769 |
cosine_accuracy@5 |
0.0769 |
cosine_accuracy@10 |
0.2308 |
cosine_precision@1 |
0.0 |
cosine_precision@3 |
0.0256 |
cosine_precision@5 |
0.0154 |
cosine_precision@10 |
0.0231 |
cosine_recall@1 |
0.0 |
cosine_recall@3 |
0.0769 |
cosine_recall@5 |
0.0769 |
cosine_recall@10 |
0.2308 |
cosine_ndcg@10 |
0.0982 |
cosine_mrr@10 |
0.059 |
cosine_map@100 |
0.0828 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0769 |
cosine_accuracy@3 |
0.2308 |
cosine_accuracy@5 |
0.2308 |
cosine_accuracy@10 |
0.3846 |
cosine_precision@1 |
0.0769 |
cosine_precision@3 |
0.0769 |
cosine_precision@5 |
0.0462 |
cosine_precision@10 |
0.0385 |
cosine_recall@1 |
0.0769 |
cosine_recall@3 |
0.2308 |
cosine_recall@5 |
0.2308 |
cosine_recall@10 |
0.3846 |
cosine_ndcg@10 |
0.2194 |
cosine_mrr@10 |
0.1701 |
cosine_map@100 |
0.1861 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0 |
cosine_accuracy@3 |
0.0769 |
cosine_accuracy@5 |
0.1538 |
cosine_accuracy@10 |
0.3077 |
cosine_precision@1 |
0.0 |
cosine_precision@3 |
0.0256 |
cosine_precision@5 |
0.0308 |
cosine_precision@10 |
0.0308 |
cosine_recall@1 |
0.0 |
cosine_recall@3 |
0.0769 |
cosine_recall@5 |
0.1538 |
cosine_recall@10 |
0.3077 |
cosine_ndcg@10 |
0.13 |
cosine_mrr@10 |
0.0763 |
cosine_map@100 |
0.1002 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 111 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 2 tokens
- mean: 124.53 tokens
- max: 512 tokens
|
- min: 3 tokens
- mean: 11.15 tokens
- max: 60 tokens
|
- Samples:
positive |
anchor |
ply C Tris pH8.0 Dextran Trehalose dNTPS Na2SO4 Triton X-100 DTT TABLE 3 GAS Lyophilization Mix -Reagent Composition vl.0 v2.0 Strep A (Target) Lyo Conditions 500 nM F30 500 nM F30b.5om 100 nM R41m 100 nM R41m.lb.5om 200 nM MB4 FAM 200 nM MB4_ Fam 3.0. ug 5.0 ug 30U 0.7 ug 1 ug 1 ug 50mM 50 mM Dextran 150 Dextran 500 5% in 2x Iyo 5% in 2x Iyo 100 mM in 2x Iyo 100 mM in 2x Iyo 0.3 mM 0.3 mM 15 mM 22.5 mM 0.10% 0.10% 2mM 2mM Strep A (IC) Lyo Conditions |
NE |
CTGTTTG (SEQ ID NO, 5) To confirm that the targeted sequence was conserved among all GAS cepA sequences found in the public domain as well as unique to GAS, multiple sequence alignments and BLAST analyses were performed. Multiple alignment analysis of these sequences showed complete homology for the region of the gene targeted by the 3062 assay. Further, there are currently 24 complete GAS genomes (including whole genome shotgun sequence) available for sequence analysis in NCBI Genome. The cepA gene is present in all 24 genomes, and the 3062 target region within cepA is conserved among all 24 genomes. Upon BLAST analysis, it was confirmed that no other species contain significant homology to the 3062 target sequence. Assay Development As a reference, the reagent mixtures discussed below are |
GCAATCTGAGGAGAGGCCATACTTGTTC |
AGATTGC (SEQ ID NO, 4) |
CAAACAGGAACAAGTATGGCCTCTCCTC |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 32
num_train_epochs
: 15
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
fp16
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 32
eval_accumulation_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 15
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: batch_sampler
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0 |
0 |
- |
0.0747 |
0.0694 |
0.0681 |
0.1224 |
0.0705 |
1.0 |
1 |
- |
0.0750 |
0.0694 |
0.0681 |
0.1224 |
0.0705 |
2.0 |
2 |
- |
0.1008 |
0.0724 |
0.0696 |
0.0719 |
0.0710 |
3.0 |
3 |
- |
0.1861 |
0.0828 |
0.0745 |
0.1002 |
0.0814 |
4.0 |
4 |
- |
0.1711 |
0.0968 |
0.0825 |
0.0861 |
0.1001 |
5.0 |
6 |
- |
0.1505 |
0.1140 |
0.1094 |
0.1534 |
0.1502 |
6.0 |
7 |
- |
0.1222 |
0.1143 |
0.1108 |
0.1528 |
0.1520 |
7.0 |
8 |
- |
0.1589 |
0.1536 |
0.1512 |
0.1513 |
0.1516 |
8.0 |
9 |
- |
0.1561 |
0.1550 |
0.1531 |
0.1495 |
0.1520 |
9.0 |
10 |
1.8482 |
0.1565 |
0.1558 |
0.1544 |
0.1483 |
0.1522 |
10.0 |
12 |
- |
0.1562 |
0.1551 |
0.1557 |
0.1416 |
0.1531 |
11.0 |
13 |
- |
0.1561 |
0.1558 |
0.1562 |
0.1401 |
0.1533 |
12.0 |
14 |
- |
0.1559 |
0.1559 |
0.1562 |
0.1402 |
0.1533 |
13.0 |
15 |
- |
0.1861 |
0.0828 |
0.0745 |
0.1002 |
0.0814 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}