metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:160
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Priya Softweb emphasizes the importance of maintaining a clean and
organized workspace. The company's HR policies clearly state that
employees are responsible for keeping their assigned workspaces clean,
orderly, and free from unnecessary items. Spitting tobacco, gum, or other
substances in the washrooms is strictly prohibited. The company believes
that a clean and organized work environment contributes to a more
efficient and professional work experience for everyone. This emphasis on
cleanliness reflects the company's commitment to creating a pleasant and
hygienic workspace for its employees.
sentences:
- >-
What is Priya Softweb's policy on the use of mobile phones during work
hours?
- >-
What steps does Priya Softweb take to ensure that the workspace is clean
and organized?
- >-
What are the repercussions for employees who violate the Non-Disclosure
Agreement at Priya Softweb?
- source_sentence: >-
Priya Softweb provides allocated basement parking facilities for employees
to park their two-wheelers and four-wheelers. However, parking on the
ground floor, around the lawn or main premises, is strictly prohibited as
this space is reserved for Directors. Employees should use the parking
under wings 5 and 6, while other parking spaces are allocated to different
wings. Parking two-wheelers in the car parking zone is not permitted, even
if space is available. Two-wheelers should be parked in the designated
basement space on the main stand, not on the side stand. Employees are
encouraged to park in common spaces on a first-come, first-served basis.
The company clarifies that it is not responsible for providing parking and
that employees park their vehicles at their own risk. This comprehensive
parking policy ensures organized parking arrangements and clarifies the
company's liability regarding vehicle safety.
sentences:
- What is the application process for planned leaves at Priya Softweb?
- What are the parking arrangements at Priya Softweb?
- What is the process for reporting a security breach at Priya Softweb?
- source_sentence: >-
The Diwali bonus at Priya Softweb is a discretionary benefit linked to the
company's business performance. Distributed during the festive season of
Diwali, it serves as a gesture of appreciation for employees'
contributions throughout the year. However, it's important to note that
employees currently under the notice period are not eligible for this
bonus. This distinction highlights that the bonus is intended to reward
ongoing commitment and contribution to the company's success.
sentences:
- >-
What steps does Priya Softweb take to promote responsible use of company
resources?
- >-
How does Priya Softweb demonstrate its commitment to Diversity, Equity,
and Inclusion (DEI)?
- What is the significance of the company's Diwali bonus at Priya Softweb?
- source_sentence: >-
Priya Softweb's HR Manual paints a picture of a company that values its
employees while upholding a strong sense of professionalism and ethical
conduct. The company emphasizes a structured and transparent approach to
its HR processes, ensuring clarity and fairness in areas like recruitment,
performance appraisals, compensation, leave management, work-from-home
arrangements, and incident reporting. The manual highlights the importance
of compliance with company policies, promotes diversity and inclusion, and
encourages a culture of continuous learning and development. Overall, the
message conveyed is one of creating a supportive, respectful, and
growth-oriented work environment for all employees.
sentences:
- What is the overall message conveyed by Priya Softweb's HR Manual?
- What is the process for reporting employee misconduct at Priya Softweb?
- What is Priya Softweb's policy on salary disbursement and payslips?
- source_sentence: >-
No, work-from-home arrangements do not affect an employee's employment
terms, compensation, and benefits at Priya Softweb. This clarifies that
work-from-home is a flexible work arrangement and does not impact the
employee's overall employment status or benefits.
sentences:
- >-
Do work-from-home arrangements affect compensation and benefits at Priya
Softweb?
- What is the objective of the Work From Home Policy at Priya Softweb?
- What is the procedure for a new employee joining Priya Softweb?
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6111111111111112
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7777777777777778
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7777777777777778
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8333333333333334
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6111111111111112
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.25925925925925924
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15555555555555559
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08333333333333334
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6111111111111112
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7777777777777778
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7777777777777778
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8333333333333334
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7192441461309548
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6828703703703703
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6895641882483987
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.5555555555555556
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7777777777777778
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7777777777777778
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8333333333333334
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5555555555555556
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.25925925925925924
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15555555555555559
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08333333333333334
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5555555555555556
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7777777777777778
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7777777777777778
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8333333333333334
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6972735740811556
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6537037037037037
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6594551282051282
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.4444444444444444
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6666666666666666
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7777777777777778
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8888888888888888
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.4444444444444444
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2222222222222222
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15555555555555559
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0888888888888889
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.4444444444444444
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6666666666666666
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7777777777777778
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8888888888888888
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6562432565194594
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5836419753086418
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5862843837990037
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.4444444444444444
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6666666666666666
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7222222222222222
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7777777777777778
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.4444444444444444
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2222222222222222
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1444444444444445
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07777777777777779
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.4444444444444444
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6666666666666666
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7222222222222222
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7777777777777778
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6173875222934583
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5653439153439153
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5728811234914597
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.3888888888888889
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6111111111111112
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6666666666666666
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7777777777777778
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3888888888888889
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2037037037037037
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.13333333333333336
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07777777777777779
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3888888888888889
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6111111111111112
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6666666666666666
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7777777777777778
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5654500657830313
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.49922839506172845
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5078970140244651
name: Cosine Map@100
SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("kr-manish/bge-base-financial-matryoshka")
sentences = [
"No, work-from-home arrangements do not affect an employee's employment terms, compensation, and benefits at Priya Softweb. This clarifies that work-from-home is a flexible work arrangement and does not impact the employee's overall employment status or benefits.",
'Do work-from-home arrangements affect compensation and benefits at Priya Softweb?',
'What is the objective of the Work From Home Policy at Priya Softweb?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6111 |
cosine_accuracy@3 |
0.7778 |
cosine_accuracy@5 |
0.7778 |
cosine_accuracy@10 |
0.8333 |
cosine_precision@1 |
0.6111 |
cosine_precision@3 |
0.2593 |
cosine_precision@5 |
0.1556 |
cosine_precision@10 |
0.0833 |
cosine_recall@1 |
0.6111 |
cosine_recall@3 |
0.7778 |
cosine_recall@5 |
0.7778 |
cosine_recall@10 |
0.8333 |
cosine_ndcg@10 |
0.7192 |
cosine_mrr@10 |
0.6829 |
cosine_map@100 |
0.6896 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5556 |
cosine_accuracy@3 |
0.7778 |
cosine_accuracy@5 |
0.7778 |
cosine_accuracy@10 |
0.8333 |
cosine_precision@1 |
0.5556 |
cosine_precision@3 |
0.2593 |
cosine_precision@5 |
0.1556 |
cosine_precision@10 |
0.0833 |
cosine_recall@1 |
0.5556 |
cosine_recall@3 |
0.7778 |
cosine_recall@5 |
0.7778 |
cosine_recall@10 |
0.8333 |
cosine_ndcg@10 |
0.6973 |
cosine_mrr@10 |
0.6537 |
cosine_map@100 |
0.6595 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4444 |
cosine_accuracy@3 |
0.6667 |
cosine_accuracy@5 |
0.7778 |
cosine_accuracy@10 |
0.8889 |
cosine_precision@1 |
0.4444 |
cosine_precision@3 |
0.2222 |
cosine_precision@5 |
0.1556 |
cosine_precision@10 |
0.0889 |
cosine_recall@1 |
0.4444 |
cosine_recall@3 |
0.6667 |
cosine_recall@5 |
0.7778 |
cosine_recall@10 |
0.8889 |
cosine_ndcg@10 |
0.6562 |
cosine_mrr@10 |
0.5836 |
cosine_map@100 |
0.5863 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4444 |
cosine_accuracy@3 |
0.6667 |
cosine_accuracy@5 |
0.7222 |
cosine_accuracy@10 |
0.7778 |
cosine_precision@1 |
0.4444 |
cosine_precision@3 |
0.2222 |
cosine_precision@5 |
0.1444 |
cosine_precision@10 |
0.0778 |
cosine_recall@1 |
0.4444 |
cosine_recall@3 |
0.6667 |
cosine_recall@5 |
0.7222 |
cosine_recall@10 |
0.7778 |
cosine_ndcg@10 |
0.6174 |
cosine_mrr@10 |
0.5653 |
cosine_map@100 |
0.5729 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3889 |
cosine_accuracy@3 |
0.6111 |
cosine_accuracy@5 |
0.6667 |
cosine_accuracy@10 |
0.7778 |
cosine_precision@1 |
0.3889 |
cosine_precision@3 |
0.2037 |
cosine_precision@5 |
0.1333 |
cosine_precision@10 |
0.0778 |
cosine_recall@1 |
0.3889 |
cosine_recall@3 |
0.6111 |
cosine_recall@5 |
0.6667 |
cosine_recall@10 |
0.7778 |
cosine_ndcg@10 |
0.5655 |
cosine_mrr@10 |
0.4992 |
cosine_map@100 |
0.5079 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 160 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 18 tokens
- mean: 93.95 tokens
- max: 381 tokens
|
- min: 13 tokens
- mean: 20.32 tokens
- max: 34 tokens
|
- Samples:
positive |
anchor |
Priya Softweb's HR Manual provides valuable insights into the company's culture and values. Key takeaways include: * Structure and Transparency: The company emphasizes a structured and transparent approach to its HR processes. This is evident in its clear policies for recruitment, performance appraisals, compensation, leave management, work-from-home arrangements, and incident reporting. * Professionalism and Ethics: Priya Softweb places a high value on professionalism and ethical conduct. Its dress code, guidelines for mobile phone usage, and strict policies against tobacco use within the office all point toward a commitment to maintaining a professional and respectful work environment. * Employee Well-being: The company demonstrates a genuine concern for the well-being of its employees. This is reflected in its comprehensive leave policies, flexible work-from-home arrangements, and efforts to promote a healthy and clean workspace. * Diversity and Inclusion: Priya Softweb is committed to fostering a diverse and inclusive workplace, where employees from all backgrounds feel valued and respected. Its DEI policy outlines the company's commitment to equal opportunities, diverse hiring practices, and inclusive benefits and policies. * Continuous Learning and Development: The company encourages a culture of continuous learning and development, providing opportunities for employees to expand their skillsets and stay current with industry advancements. This is evident in its policies for Ethics & Compliance training and its encouragement of utilizing idle time for self-learning and exploring new technologies. Overall, Priya Softweb's HR Manual reveals a company culture that prioritizes structure, transparency, professionalism, employee well-being, diversity, and a commitment to continuous improvement. The company strives to create a supportive and growth-oriented work environment where employees feel valued and empowered to succeed. |
What are the key takeaways from Priya Softweb's HR Manual regarding the company's culture and values? |
Priya Softweb provides allocated basement parking facilities for employees to park their two-wheelers and four-wheelers. However, parking on the ground floor, around the lawn or main premises, is strictly prohibited as this space is reserved for Directors. Employees should use the parking under wings 5 and 6, while other parking spaces are allocated to different wings. Parking two-wheelers in the car parking zone is not permitted, even if space is available. Two-wheelers should be parked in the designated basement space on the main stand, not on the side stand. Employees are encouraged to park in common spaces on a first-come, first-served basis. The company clarifies that it is not responsible for providing parking and that employees park their vehicles at their own risk. This comprehensive parking policy ensures organized parking arrangements and clarifies the company's liability regarding vehicle safety. |
What are the parking arrangements at Priya Softweb? |
Investments and declarations must be submitted on or before the 25th of each month through OMS at Priya Softweb. |
What is the deadline for submitting investments and declarations at Priya Softweb? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
1.0 |
1 |
0.5729 |
0.5863 |
0.6595 |
0.5079 |
0.6896 |
2.0 |
2 |
0.5729 |
0.5863 |
0.6595 |
0.5079 |
0.6896 |
3.0 |
3 |
0.5729 |
0.5863 |
0.6595 |
0.5079 |
0.6896 |
3.2 |
4 |
0.5729 |
0.5863 |
0.6595 |
0.5079 |
0.6896 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}