openai/whisper-medium-Assamese
This model is a fine-tuned version of openai/whisper-medium on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 1.0992
- Wer: 58.3649
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 600
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0841 | 1.13 | 600 | 1.0992 | 58.3649 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.