kiyeon1221's picture
Update README.md
555c596
---
license: cc-by-nc-4.0
base_model: KT-AI/midm-bitext-S-7B-inst-v1
tags:
- generated_from_trainer
model-index:
- name: lora-midm-7b-food-order-understanding
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ์‹คํ—˜๋‚ด์šฉ๊ณผ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๋ถ„๋ฅ˜ ๊ฒฐ๊ณผ ๋ฆฌํฌํŠธ
์ฃผ๋ฌธ ๋ฌธ์žฅ์— ์˜ํ•ด ํ•™์Šต๋œ midm์„ nsmc (์˜ํ™” ๋ฆฌ๋ทฐ ๋ฐ์ดํ„ฐ์…‹) train dataset 3000๊ฐœ๋กœ ํ•™์Šต์„ ์‹œ์ผฐ๋‹ค. ์ฒ˜์Œ์—๋Š” 2000๊ฐœ๋ฅผ ํ•™์Šต์‹œ์ผฐ์œผ๋‚˜ ์ •ํ™•๋„๊ฐ€ ์˜ˆ์ƒํ•œ ๊ฒƒ ๋งŒํผ ๋‚˜์˜ค์ง€ ์•Š์•„ 1000๊ฐœ๋ฅผ ๋” ํ•™์Šต์‹œ์ผฐ๋”๋‹ˆ ์•ฝ 2%์˜ ์ •ํ™•๋„๊ฐ€ ์˜ฌ๋ผ๊ฐ”๋‹ค. ๊ทธ๋ฆฌ๊ณ  1000๊ฐœ์˜ test dataset์œผ๋กœ ํ…Œ์ŠคํŠธ๋ฅผ ํ•ด๋ณด์•˜๋‹ค.
์ •ํ™•๋„๋Š” 89.30 % ๊ฐ€ ๋‚˜์™”์œผ๋ฉฐ ํ‘œ๋Š” ๋ฐ‘ ์‚ฌ์ง„์œผ๋กœ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ์‹คํ—˜์€ ๋‹ค๋ฅธ ๋ฐ์ดํ„ฐ ์…‹๊ณผ ๋‹ค๋ฅธ ์š”๊ตฌ๋กœ ํ•™์Šต๋˜์–ด์žˆ๋˜ LLM์„ ์ƒˆ ๋ฐ์ดํ„ฐ ์…‹๊ณผ ์ƒˆ ์š”๊ตฌ๋กœ ๋ฏธ์„ธํŠœ๋‹ ํ•˜์˜€์„ ๋•Œ ์ •ํ™•๋„๊ฐ€ ์–ผ๋งŒํผ ๋‚˜์˜ค๋Š”์ง€๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ๊ฒƒ์ด๋‹ค.
# ํ‘œ
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6523d751ab14165941297c07/NQ2fLxz5VL94yBCVjvL9G.jpeg)
# lora-midm-7b-food-order-understanding
This model is a fine-tuned version of [KT-AI/midm-bitext-S-7B-inst-v1](https://huggingface.co./KT-AI/midm-bitext-S-7B-inst-v1) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 300
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0