metadata
library_name: transformers
language:
- ne
license: mit
base_model: kiranpantha/w2v-bert-2.0-nepali-unlabeled-1
tags:
- generated_from_trainer
datasets:
- kiranpantha/OpenSLR54-Balanced-Nepali
metrics:
- wer
model-index:
- name: Wave2Vec2-Bert2.0 - Kiran Pantha
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: OpenSLR54
type: kiranpantha/OpenSLR54-Balanced-Nepali
config: default
split: test
args: 'config: ne, split: train,test'
metrics:
- name: Wer
type: wer
value: 0.44966842373745963
Wave2Vec2-Bert2.0 - Kiran Pantha
This model is a fine-tuned version of kiranpantha/w2v-bert-2.0-nepali-unlabeled-1 on the OpenSLR54 dataset. It achieves the following results on the evaluation set:
- Loss: 0.5190
- Wer: 0.4497
- Cer: 0.1090
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
---|---|---|---|---|---|
0.4494 | 0.0375 | 300 | 0.1147 | 0.5118 | 0.4793 |
0.5556 | 0.075 | 600 | 0.1448 | 0.6503 | 0.5808 |
0.5684 | 0.1125 | 900 | 0.1418 | 0.6258 | 0.5741 |
0.5309 | 0.15 | 1200 | 0.1446 | 0.6867 | 0.5391 |
0.615 | 0.1875 | 1500 | 0.1566 | 0.6692 | 0.5844 |
0.5627 | 0.225 | 1800 | 0.1434 | 0.6586 | 0.5597 |
0.6188 | 0.2625 | 2100 | 0.1500 | 0.6250 | 0.5559 |
0.5888 | 0.3 | 2400 | 0.1624 | 0.6863 | 0.6162 |
0.5435 | 0.3375 | 2700 | 0.1551 | 0.6415 | 0.5736 |
0.5667 | 0.375 | 3000 | 0.1478 | 0.6041 | 0.5661 |
0.5323 | 0.4125 | 3300 | 0.1392 | 0.5805 | 0.5327 |
0.5471 | 0.45 | 3600 | 0.1390 | 0.5699 | 0.5327 |
0.5939 | 0.4875 | 3900 | 0.1341 | 0.5739 | 0.5169 |
0.5795 | 0.525 | 4200 | 0.1392 | 0.6036 | 0.5278 |
0.4974 | 0.5625 | 4500 | 0.1255 | 0.5331 | 0.4997 |
0.5247 | 0.6 | 4800 | 0.1300 | 0.5649 | 0.5190 |
0.5035 | 0.6375 | 5100 | 0.1292 | 0.5583 | 0.5067 |
0.5354 | 0.675 | 5400 | 0.1270 | 0.5472 | 0.5115 |
0.536 | 0.7125 | 5700 | 0.1283 | 0.5406 | 0.5012 |
0.498 | 0.75 | 6000 | 0.1331 | 0.5747 | 0.5167 |
0.4339 | 0.7875 | 6300 | 0.1266 | 0.5224 | 0.4846 |
0.4504 | 0.825 | 6600 | 0.1234 | 0.5549 | 0.4982 |
0.4237 | 0.8625 | 6900 | 0.1221 | 0.5376 | 0.4759 |
0.4434 | 0.9 | 7200 | 0.1303 | 0.5651 | 0.5080 |
0.443 | 0.9375 | 7500 | 0.1219 | 0.5222 | 0.4889 |
0.4282 | 0.975 | 7800 | 0.1247 | 0.5297 | 0.4936 |
0.4128 | 1.0125 | 8100 | 0.1230 | 0.5263 | 0.4804 |
0.4507 | 1.05 | 8400 | 0.1254 | 0.5548 | 0.4881 |
0.4008 | 1.0875 | 8700 | 0.1232 | 0.5411 | 0.4816 |
0.4834 | 1.125 | 9000 | 0.1215 | 0.5264 | 0.4853 |
0.3955 | 1.1625 | 9300 | 0.1232 | 0.5288 | 0.4876 |
0.3837 | 1.2 | 9600 | 0.1224 | 0.5496 | 0.4853 |
0.3819 | 1.2375 | 9900 | 0.5215 | 0.4739 | 0.1232 |
0.3771 | 1.275 | 10200 | 0.5115 | 0.4641 | 0.1188 |
0.4067 | 1.3125 | 10500 | 0.5274 | 0.4810 | 0.1236 |
0.3561 | 1.35 | 10800 | 0.5366 | 0.4739 | 0.1182 |
0.3971 | 1.3875 | 11100 | 0.4951 | 0.4669 | 0.1178 |
0.337 | 1.425 | 11400 | 0.5180 | 0.4630 | 0.1156 |
0.4031 | 1.4625 | 11700 | 0.4895 | 0.4664 | 0.1156 |
0.4278 | 1.5 | 12000 | 0.4858 | 0.4469 | 0.1107 |
0.3332 | 1.5375 | 12300 | 0.4986 | 0.4546 | 0.1130 |
0.3516 | 1.575 | 12600 | 0.5067 | 0.4677 | 0.1148 |
0.4022 | 1.6125 | 12900 | 0.5022 | 0.4638 | 0.1114 |
0.3922 | 1.65 | 13200 | 0.4753 | 0.4588 | 0.1130 |
0.3483 | 1.6875 | 13500 | 0.4812 | 0.4562 | 0.1135 |
0.3572 | 1.725 | 13800 | 0.4940 | 0.4461 | 0.1083 |
0.2796 | 1.7625 | 14100 | 0.4854 | 0.4457 | 0.1082 |
0.2555 | 1.8 | 14400 | 0.5231 | 0.4482 | 0.1099 |
0.2823 | 1.8375 | 14700 | 0.5126 | 0.4475 | 0.1093 |
0.2478 | 1.875 | 15000 | 0.5063 | 0.4458 | 0.1087 |
0.2435 | 1.9125 | 15300 | 0.5151 | 0.4409 | 0.1077 |
0.2478 | 1.95 | 15600 | 0.5185 | 0.4464 | 0.1084 |
0.2653 | 1.9875 | 15900 | 0.5190 | 0.4497 | 0.1090 |
Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1