wav2vec2-60-urdu / README.md
kingabzpro's picture
Update README.md
ed37d85
|
raw
history blame
3.4 kB
metadata
language:
  - ur
license: apache-2.0
tags:
  - automatic-speech-recognition
  - robust-speech-event
datasets:
  - common_voice_7
metrics:
  - wer
  - cer
model-index:
  - name: wav2vec2-60-urdu
    results:
      - task:
          type: automatic-speech-recognition
          name: Urdu Speech Recognition
        dataset:
          type: common_voice_7
          name: Urdu
          args: ur
        metrics:
          - type: wer
            value: 59.2
            name: Test WER
            args:
              - learning_rate: 0.0003
              - train_batch_size: 16
              - eval_batch_size: 8
              - seed: 42
              - gradient_accumulation_steps: 2
              - total_train_batch_size: 32
              - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
              - lr_scheduler_type: linear
              - lr_scheduler_warmup_steps: 200
              - num_epochs: 50
              - mixed_precision_training: Native AMP
          - type: cer
            value: 32.9
            name: Test CER
            args:
              - learning_rate: 0.0003
              - train_batch_size: 16
              - eval_batch_size: 8
              - seed: 42
              - gradient_accumulation_steps: 2
              - total_train_batch_size: 32
              - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
              - lr_scheduler_type: linear
              - lr_scheduler_warmup_steps: 200
              - num_epochs: 50
              - mixed_precision_training: Native AMP

wav2vec2-large-xlsr-53-urdu

This model is a fine-tuned version of Harveenchadha/vakyansh-wav2vec2-urdu-urm-60 on the common_voice dataset. It achieves the following results on the evaluation set:

  • Wer: 0.5921
  • Cer: 0.3288

Model description

The training and valid dataset is 0.58 hours. It was hard to train any model on lower number of so I decided to take Urdu-60 checkpoint and finetune the wav2vwc2 model.

Training procedure

Trained on Harveenchadha/vakyansh-wav2vec2-urdu-urm-60 due to lesser number of samples.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Wer Cer
13.83 8.33 100 0.6611 0.3639
1.0144 16.67 200 0.6498 0.3731
0.5801 25.0 300 0.6454 0.3767
0.3344 33.33 400 0.6349 0.3548
0.1606 41.67 500 0.6105 0.3348
0.0974 50.0 600 0.5921 0.3288

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.10.0+cu111
  • Datasets 1.17.0
  • Tokenizers 0.10.3