wav2vec2-60-urdu / README.md
kingabzpro's picture
Update README.md
73e8d12
|
raw
history blame
3.05 kB
metadata
language:
  - ur
license: apache-2.0
tags:
  - automatic-speech-recognition
  - robust-speech-event
datasets:
  - common_voice
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xlsr-53-urdu
    results:
      - task:
          type: automatic-speech-recognition
          name: Urdu Speech Recognition
        dataset:
          type: common_voice
          name: Urdu
          args: ur
        metrics:
          - type: wer
            value: 100
            name: Test WER
            args:
              - learning_rate: 0.0003
              - train_batch_size: 16
              - eval_batch_size: 8
              - seed: 42
              - gradient_accumulation_steps: 2
              - total_train_batch_size: 32
              - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
              - lr_scheduler_type: linear
              - lr_scheduler_warmup_steps: 10
              - num_epochs: 30
              - mixed_precision_training: Native AMP

wav2vec2-large-xlsr-53-urdu

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6772
  • Wer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
11.1125 3.33 40 3.2875 1.0
3.2077 6.67 80 3.1499 1.0
3.1725 10.0 120 3.1484 1.0
3.148 13.33 160 3.0948 1.0
3.1098 16.67 200 3.0897 1.0
3.085 20.0 240 3.0609 1.0
3.0315 23.33 280 2.9636 1.0
2.9038 26.67 320 2.7838 1.0
2.7599 30.0 360 2.6772 1.0

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.0+cu111
  • Datasets 1.17.0
  • Tokenizers 0.10.3