PhoWhisper-large-ct2

This repository contains the PhoWhisper-large model converted to use CTranslate2 for faster inference. This allows for significant performance improvements, especially on CPU.

Usage

  1. Installation: Ensure you have the necessary libraries installed:

    pip install transformers ctranslate2 faster-whisper
    
  2. Conversion (only needed once): This step converts the original Hugging Face model to the CTranslate2 format.

    ct2-transformers-converter --model vinai/PhoWhisper-large --output_dir PhoWhisper-large-ct2 --copy_files tokenizer_config.json --quantization float16
    
  3. Transcription:

    import os
    from faster_whisper import WhisperModel
    
    model_size = "kiendt/PhoWhisper-large-ct2"
    # Run on GPU with FP16
    #model = WhisperModel(model_size, device="cuda", compute_type="float16")
    
    # or run on GPU with INT8
    # model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
    # or run on CPU with INT8
    model = WhisperModel(model_size, device="cpu", compute_type="int8")
    
    segments, info = model.transcribe("audio.wav", beam_size=5) # Replace audio.wav with your audio file
    
    print("Detected language '%s' with probability %f" % (info.language, info.language_probability))
    
    for segment in segments:
        print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
    

Model Details

  • Based on the vinai/PhoWhisper-large model.
  • Converted using ct2-transformers-converter.
  • Optimized for faster inference with CTranslate2.

Contributing

Contributions are welcome! Please open an issue or submit a pull request.

License

MIT

Downloads last month
5
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for kiendt/PhoWhisper-large-ct2

Finetuned
(1)
this model