metadata
base_model: slm-research-vn/Qwen2-7B-Instruct-SPPO-Function-call-v2.5
datasets:
- slm-research-vn/dpo-format-function-calling-v4
- >-
slm-research-vn/dpo-format-glaive-code-assistant-v3-with-mistral-large-slm-iter4
- argilla/dpo-mix-7k
library_name: peft
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
model-index:
- name: Qwen2-7B-Instruct-SPPO-Function-call-v2.6
results: []
Qwen2-7B-Instruct-SPPO-Function-call-v2.6
This model is a fine-tuned version of slm-research-vn/Qwen2-7B-Instruct-SPPO-Function-call-v2.5 on the slm-research-vn/dpo-format-function-calling-v4, the slm-research-vn/dpo-format-glaive-code-assistant-v3-with-mistral-large-slm-iter4 and the argilla/dpo-mix-7k datasets. It achieves the following results on the evaluation set:
- Loss: 0.3005
- Rewards/chosen: 1.6737
- Rewards/rejected: -0.4932
- Rewards/accuracies: 0.8699
- Rewards/margins: 2.1670
- Logps/rejected: -276.8380
- Logps/chosen: -200.9362
- Logits/rejected: -0.6568
- Logits/chosen: -0.6408
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.6437 | 0.0916 | 100 | 0.6128 | 0.3050 | 0.0739 | 0.7254 | 0.2311 | -265.4963 | -228.3116 | -0.7319 | -0.7206 |
0.5175 | 0.1832 | 200 | 0.4987 | 1.1265 | 0.2914 | 0.8237 | 0.8351 | -261.1460 | -211.8815 | -0.7134 | -0.7068 |
0.3903 | 0.2749 | 300 | 0.4279 | 1.7297 | 0.4889 | 0.8468 | 1.2408 | -257.1960 | -199.8173 | -0.6700 | -0.6642 |
0.3712 | 0.3665 | 400 | 0.3781 | 1.7272 | 0.2255 | 0.8468 | 1.5017 | -262.4645 | -199.8672 | -0.6756 | -0.6691 |
0.3064 | 0.4581 | 500 | 0.3477 | 1.7220 | -0.0183 | 0.8613 | 1.7403 | -267.3389 | -199.9704 | -0.6642 | -0.6488 |
0.3054 | 0.5497 | 600 | 0.3271 | 1.6469 | -0.1977 | 0.8671 | 1.8447 | -270.9281 | -201.4723 | -0.6576 | -0.6407 |
0.2919 | 0.6413 | 700 | 0.3144 | 1.7376 | -0.3034 | 0.8642 | 2.0410 | -273.0414 | -199.6590 | -0.6753 | -0.6672 |
0.314 | 0.7329 | 800 | 0.3056 | 1.7037 | -0.4229 | 0.8671 | 2.1266 | -275.4323 | -200.3379 | -0.6685 | -0.6574 |
0.3014 | 0.8246 | 900 | 0.3020 | 1.6807 | -0.4632 | 0.8699 | 2.1439 | -276.2374 | -200.7971 | -0.6702 | -0.6641 |
0.268 | 0.9162 | 1000 | 0.2999 | 1.6798 | -0.4929 | 0.8844 | 2.1726 | -276.8312 | -200.8157 | -0.6690 | -0.6635 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1